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1 Introduction

The Great Depression of 1929-1933 was the worst economic downturn in U.S. history with a 30%

decline in real GDP and a peak unemployment rate of 25.4%. As shown in Figure 1, parallel-

ing this dramatic downturn was also a considerable rise in a purified total factor productivity

(TFP) measure that accounts for inter-industry input reallocation, increasing returns to scale, un-

observed input utilization, and intermediate inputs. (This purified TFP series is from Watanabe

(2016). See Page 28 for further discussion, details, and sources for this variable and its associated

Figure 1.) This purified TFP measure grew by nearly 6% from 1929 to 1933 and increased further

by an astounding rate of more than 28% from 1933 to 1935, leading to an overall growth rate for

the 1929-1935 period of nearly 36%. Since aggregate TFP changes generally capture both an ag-

gregate exogenous technology change as well as input-reallocation-induced changes, this striking

rise in purified TFP constitutes meaningful motivation for studying the role of intra-industry input

reallocation cleansing effects in the 1929-1935 period.

The 1929-1935 period, which is the only period from the first half of the 20th century for which

the Census of Manufacturers’ original establishment-level schedules managed to survive, covers

both the downturn phase of the Great Depression as well as the early part of its recovery phase.

As such, this period provides a rich setting for the formal examination of the extent of cleansing

that can be associated with the Great Depression.

Terminology. The term ’TFP’ throughout this paper refers to physical output per unit of com-

posite input. Unless explicitly stated otherwise as ’revenue TFP’ (i.e., nominal output per unit

of composite input), ’TFP’ pertains to physical TFP (i.e., physical output per unit of composite

input).1 Accordingly, the term ’aggregate TFP’ represents the employment-weighted average of

establishment-level TFP levels. (The terms ’employment’ and ’labor’ are also interchangeably

used in this paper.)

1My econometric approach, by including location fixed effects, will arguably purge my estimated
cleansing effect of horizontal-differentiation-induced differences in establishment-level prices. But vertical-
differentiation-induced (i.e., quality-induced) price differences may still remain after this purging. Hence,
although I do not explicitly model such quality-induced differences in my underlying framework (see Sec-
tion 3), one can reasonably view my cleansing effect as arising from TFP differences across establishments
that reflect both process innovation differences as well as product innovation differences.
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The term ’micro-level cleansing effect’ refers to the positive causal effect of initial TFP on fu-

ture employment growth estimated from my establishment-level regressions; the term ’aggregate

cleansing effect’ delineates the rise in aggregate TFP which occurs due to a shift of labor from

low-TFP establishments to high-TFP ones. Importantly, the labor shift underlying the aggregate

cleansing effect structurally and conceptually builds on the micro-level cleansing effect which im-

plies that high-TFP producers are predicted to grow more than low-TFP ones.

Objective. The objective of this paper is to study the extent of cleansing that took place during

the Great Depression period, i.e., the extent to which aggregate TFP was increased by the shifting

of resources from low-TFP producers to high-TFP ones. By using biennial establishment-level data

from 1929 to 1935, I can illuminate the magnitude and the persistence of this cleansing mechanism

for the Great Depression period.

To accomplish this objective, this paper unfolds in three parts. The first part lays out a simple

underlying framework which serves as a conceptual base and guide for the empirical analysis

that follows it. The second part consists of estimation of the establishment-level relation between

initial TFP and subsequent employment growth (i.e., the micro-level cleansing effect). (For com-

pleteness, I also consider exit probability as an outcome variable.) And the third part quanti-

fies this estimated micro-level effect’s implications for aggregate TFP, i.e., it maps the micro-level

cleansing effect into an aggregate cleansing effect. Both the latter parts’ analysis is done in a suit-

able Bayesian estimation framework that facilitates straightforward inference and lower bound

estimates for the true micro-level and aggregate cleansing effects.

The econometric model effectively includes three stages of estimation: estimation of

establishment-level TFPs; estimation of micro-level cleansing effect; and estimation of aggregate

cleansing effect, which is a highly nonlinear function of the micro-level cleansing effect. As

such, this model renders it rather challenging to develop a classical inference procedure that

accounts for an appropriate clustering of standard errors from each of the first two stages of

estimation while also accounting for estimation uncertainty in all three stages. I therefore turn

to a suitable Bayesian inference approach which serves as a convenient numerical procedure for

an estimation that accounts for both the latter clustering and estimation uncertainty sought-after
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objectives, while all along using uninformative priors. (Appendix A analyzes the suitability of

my estimation approach for identification of the true micro-level and aggregate cleansing effects

while Appendix B provides the technical details of the estimation and inference procedure.)

Underlying Framework. This part lays out a simple conceptual framework, which underlies

and guides this paper’s empirical analysis, in two steps. First, it lays out a general setting of

production and demand structure whose purpose is to produce a conceptual representation of

nominal output, the outcome variable in the first of two stages of my micro-level cleansing effect

estimation procedure. The latter representation underlies the examination of my estimation ap-

proach’s suitability for identification of the true micro-level and aggregate cleansing effects and

hence effectively guides this paper’s entire empirical approach.

Second, it provides a standard definition of aggregate TFP and maps the estimated micro-level

cleansing effect, which is estimated from the second part of the paper, into a cleansing-induced

change in aggregate TFP (i.e., the aggregate cleansing effect). In standing on its underlying micro-

level relation, this mapping’s theoretical foundation lies in the prediction from canonical models

of firm dynamics that producers with higher initial TFP are expected to see higher employment

growth (see, e.g., Jovanovic (1982), Hopenhayn (1992), Hopenhayn and Rogerson (1993), and Er-

icson and Pakes (1995)).

Empirical Analysis: Micro-Level Cleansing Effect. This part estimates the effect of

establishment-level TFP in 1929 on subsequent employment growth and exit probabilities from

1929 to 1931, 1933, and 1935, with all these future periods being considered separately in each of

their corresponding regressions. The employment growth variable is considered separately for

continuing establishments as well as for continuing and exiting establishments and, following

Foster et al. (2016) and Decker et al. (2020), its response can be defined as the micro-level cleansing

effect.

The estimation of this effect consists of two stages. The first estimates TFP as the residual

from a regression of nominal output on labor and capital inputs as well industry and county fixed

effects. And the second regresses future employment growth on the residual from the first stage.
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(For completeness, I also consider exit probabilities as an outcome variable in this second stage.)

As shown in Appendix A, my raw estimation procedure produces an upward biased micro-level

cleansing effect estimate. Hence, I include in the estimation of the first stage a simple and theory-

consistent bias-correction procedure which, as shown in Appendix A, produces a lower bound

estimate of the true micro-level cleansing effect. As such, the estimated micro-level cleansing

effect provides a conservative assessment of its true counterpart.

The results can be summarized as follows. Considering employment growth for both con-

tinuers and exiters, I find that having a logged TFP level that is one standard deviation higher

than the industry average in 1929 leads to 7.5%, 5.9%, and 5.6% significantly higher employ-

ment growth in 1931, 1933, and 1935, respectively; considering only continuers, the effects are

9.1%, 5.9%, and 8.9%. And, considering exit probability as the outcome variable for completeness,

higher initial TFP leads to a significant subsequent decline in exit probability of -1.3, -2.1, and -1.6

percentage points in 1931, 1933, and 1935, respectively. Underlying my micro-level cleansing re-

sults is a bias correction procedure which ensures that they constitute a lower bound for their true

counterparts.

Empirical Analysis: Aggregate Cleansing Effect. This part studies the implications of the

above-mentioned micro-level cleansing effect estimates for aggregate TFP. I first define aggregate

TFP as the employment-weighted average of establishment-level TFPs. Then, following Foster

et al. (2016) and Decker et al. (2020), I use the predicted employment weights based on the micro-

level cleansing effect estimates (the entire sample based employment growth one as well as the

continuers only sample based one) to compute the resultant aggregate TFP change in each of the

three considered future years, while keeping the estimated TFP distribution fixed at 1929 levels.

Comparing this counterfactual series to the base (1929) aggregate TFP level, I find a significant

aggregate cleansing effect that amounts to 6.5, 5, and 4.8 log points in 1931, 1933, and 1935, respec-

tively, for the continuers and exiters sample; and the corresponding numbers for the continuers

only sample are 6.7, 4.1, and 6.3 log points.

Importantly, despite this paper’s inherent data limitation that prevents an unbiased estima-

tion of the TFP series (see discussion from Page 16), Appendix A.4.3 shows through a suitable
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simulation experiment that the above-reported estimated aggregate cleansing effects materially

understate their true counterpart. This underestimation, under the most plausible calibration for

the parameter governing inverse output demand elasticity, is in the order of the true aggregate

cleansing effect being 39%-76% higher than its estimated counterpart. And, more generally, for

essentially all values of this parameter the true aggregate cleansing effect is meaningfully higher

than its estimated counterpart. Hence, the results for the aggregate cleansing effect can be inter-

preted as a loose lower bound of the true aggregate cleansing effect that took place in the Great

Depression and are supportive of the notion that this period can also be considered as an episode

of great cleansing.

Outline. The remainder of the paper is organized as follows. The next section provides a review

of the relevant literature. Section 3 describes the underlying framework of this paper’s empirical

analysis. Section 4 provides a description of the data and methodology used in this paper. Section

5 presents the main results of this paper. Section 6 discusses the reconciliation of this paper’s em-

pirical results with the broader economy’s aggregate TFP dynamics. The final section concludes.

2 Related Literature

This paper is closely related to the literature concerned with the behavior of productivity during

the Great Depression. This literature can be divided into two strands. The first studies this be-

havior using aggregate or industry-level data. And the second tries to understand this behavior

through the lens of establishment-level data.

Aggregate TFP in the Great Depression. Ohanian (2001) examines five potential drivers

of the 18% decline in TFP during 1929-1933 (capacity utilization, quality of factor inputs, inter-

sectoral misallocation,2 labor-hoarding, and increasing returns to scale), finding that these factors

explain together less than one-third of the latter 18% TFP decline. Field (2003) and Field (2006)

treat the Great Depression more broadly as the 1929-1941 period, arguing that this decade saw

2It is noteworthy that, given the micro-level data I am using and my associated within-industry reallo-
cation focused approach, this paper’s cleansing effect finding is based on intra-industry reallocation (rather
than inter-industry reallocation).
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the most significant technological advancement of any comparable period in U.S. history. And

Watanabe (2016) shows that the Great Depression’s downturn can not be attributed to adverse

technology shocks while its recovery was likely aided by favorable such shocks, obtaining this ev-

idence by constructing an annual purified TFP series for 1892–1996 (covering the private non-farm

sector) that controls for inter-industry input reallocation, varying input utilization, non-constant

returns, and imperfect competition.3

Establishment-level Analysis of the Great Depression. This strand of the literature in-

cludes the works by Lee (2016) and Ziebarth (2020), which are the closest to my work in the

literature. The former uses establishment-level data from six industries to examine the relation

between 1929 productivity levels and employment growth and exit probabilities from 1929 to

1933 and finds weak evidence for a cleansing effect.4 The latter uses the methodology from Hsieh

and Klenow (2009) and a much richer micro-level dataset that covers 24 industries (which is also

used in this paper, owing to the kind dissemination of this data by Chris Vickers and Nicolas

Ziebarth),5 which focuses on cross-sectional dispersion of establishment-level productivity (mea-

sured as value added labor productivity), and finds that changes in the establishment-level dis-

tribution of productivity were likely unimportant for understanding aggregate productivity from

1929-1935.

Relative to the work by Lee (2016), I am able to use a much larger baseline sample that is

roughly 7.7 times larger than his baseline sample while also using a suitable Bayesian estimation

framework which facilitates inference for the aggregate implications of the micro-level cleansing

effect as well as the provision of lower bounds for both the micro-level and aggregate true cleans-

ing effects. Both the latter aggregation procedure as well as my approach’s informativeness about

3Similar to Watanabe (2016), Inklaar et al. (2011) also found that technology shocks were not the driving
force behind the Great Depression’s downturn while using a largely similar methodology but focusing only
on the manufacturing sector and using biennial data covering 1919-1939.

4Lee (2016) uses value added labor productivity (nominal value added per labor input) as his first mea-
sure of productivity. The additional measure of productivity he uses is the residuals from an estimated
Cobb Douglas production function consisting of labor and intermediate inputs.

5See Ziebarth (2015), Vickers and Ziebarth (2017), Vickers and Ziebarth (2018), and Benguria et al. (2020)
for more details on this dataset. Relative to the dataset used by Lee (2016), my baseline sample is roughly
7.7 times larger than his. After removing establishments for which capital data is not available, the sample
I am left with contains 20 industries.
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the true counterparts of its estimated objects are absent from Lee (2016)’s analysis. This infor-

mativeness is crucial as it overcomes data limitations that prevent the proper measurement of

physical/revenue TFP (see Page 16 for a discussion on these data limitations).

The difference between my analysis and that of Ziebarth (2020) is methodological and is rooted

in our different conceptual frameworks. My underlying framework, which I use as a guide for my

empirical framework, draws on the theoretical insight from canonical models of firm dynamics

that producers with higher initial TFP are expected to see higher employment growth as well as

lower exit probability (see, e.g., Jovanovic (1982), Hopenhayn (1992), Hopenhayn and Rogerson

(1993), and Ericson and Pakes (1995)). This theoretical insight leads me to pursue a natural and

appropriately modified application of the empirical approach used in Foster et al. (2016), Decker

et al. (2020), and Blackwood et al. (2021), which focuses on micro-level regressions of subsequent

employment growth on initial TFP, to the Great Depression time period available from Vickers and

Ziebarth (2018)’s dataset. Ziebarth (2020) uses the theoretical framework from Hsieh and Klenow

(2009) to guide his empirical analysis, which of course has its own merit and a slew of interesting

findings but simply has a different focus than my analysis. In this sense, my work can be seen as

complementary to that by Ziebarth (2020).

3 Underlying Framework

In what follows I lay out a simple conceptual framework which is meant to accomplish two objec-

tives. The first, more general one, is to fix ideas and form a suitable conceptual base for this paper’s

entire empirical analysis. The second, specific to the third part of the paper that pursues a bottom-

up estimation approach on the basis of the second part’s estimated micro-level cleansing effect,

is to provide a clear mapping between the latter micro-level effect and the aggregate cleansing

effect which in turn operationalizes the third part of the paper. This mapping, in standing on its

underlying micro-level relation, has its theoretical underpinning in the prediction from canonical

models of firm dynamics that producers with higher initial TFP are expected to see higher future

employment growth (see, e.g., Jovanovic (1982), Hopenhayn (1992), Hopenhayn and Rogerson

(1993), and Ericson and Pakes (1995)).
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3.1 General Conceptual Setting

There are I establishments indexed by i with i = 1, 2, ..., I. (For ease of exposition, and without

loss of generality, I assume there is a single industry that contains these establishments.) Each

establishment has nominal output, or revenue, Yi,t = Pi,tZi,t where Pi,t and Zi,t are the price and

quantity of establishment i’s produced output, respectively.

Production Structure. I assume that physical intermediate inputs (i.e., materials, fuels, and

electricity), denoted by Mi,t, enter the gross-output production function in a Leontief form such

that

Zi,t = min(Ai,tL
αL
i,t KαK

i,t , ϑs Mi,t), (1)

where Ai,t, Li,t, and Ki,t are establishment-level TFP and labor and physical capital inputs, respec-

tively; αL and αK are the labor and capital production shares, assumed to be equal across estab-

lishments (which, as stated above, belong to the same industry); and ϑ represents the number of

intermediate inputs required to produce one unit of gross output Zi,t. This production structure

has s long tradition in the literature (see, e.g., Burnside et al. (1995), Basu (1996), Gilchrist et al.

(2013), Ackerberg et al. (2015), and Gandhi et al. (2020)) and has added merit in the context of man-

ufacturing establishments whose conversion of intermediate inputs to outputs can be viewed as

being based on some physical rule of fixed input-output proportionality with intermediate inputs

having no substitutability in the production process.

Optimality requires that

Zi,t = ϑMi,t = Ai,tL
αL
i,t KαK

i,t . (2)

Output Demand Structure. Following Decker et al. (2020), I consider a simple demand struc-

ture with an establishment-level output demand function given by

Pi,t = edi,t Zψ−1
i,t , (3)
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where di,t is an idiosyncratic demand shock and ψ− 1 (with ψ ≤ 1) is the inverse demand elastic-

ity.6

This demand structure can be viewed as a standard horizontal product differentiation demand

framework with ψ = 1 representing the case of no product differentiation. As such, it implies that

the product differentiation embodied in Equation (3) can be reasonably interpreted as being rooted

in within-industry spatial demand idiosyncracies. One possible extension of this demand struc-

ture is to allow for vertical-differentiation-induced price heterogeneity where higher prices reflect

higher Ai,t with the latter embodying product innovation (i.e., quality) in addition to process inno-

vation. However, for ease of exposition, I refrain from modeling this intricate extension and suffice

at pointing out here that my econometric approach only aspires to purge my estimated TFP series

of horizontal-differentiation-induced price differences (i.e., those arising from spatial demand dif-

ferences), leaving any vertical-differentiation-induced (i.e., quality-induced) price differences as

attributable to the estimated cleansing effect.7 This in turn renders a broader interpretation of this

paper’s estimated micro-level cleansing effect and its associated aggregate counterpart as being

driven by both process and product innovation rather than just process innovation.

I now formalize the reasonable interpretation of di,t as arising from spatial differentiation. Let

the I establishments be dispersed geographically over C (C < I) locations such that each estab-

lishment operates in location c. This geographical dispersion is defined such that each location c

(c = 1, 2, ..., C) is sufficiently small so that all establishments operating in that location have equal

di,t’s. Hence, we can now equivalently denote di,t by di,c(i),t where c(i) denotes the mapping be-

tween establishment i and location c and d$,c($),t = dς,c(ς),t for all $, ς ∈ c (i.e., c($) = c(ς)). Hence,

6A more general demand formulation would also include aggregate output and price terms. However,
as these are unimportant for my analysis, I abstract from them to ease exposition.

7As discussed in Foster et al. (2008)’s Section 3.3, such spatial demand differences essentially arise from
consumers having different preference orderings over producers’ locations. They also discuss the role of
relationship capital between suppliers and consumers in generating these spatial demand differences, not-
ing that relationship-induced demand differences are conceptually identical to those induced by regional
variation as long as the contracts (explicit or implicit) borne out by this relationship capital reflect horizon-
tal preference variation across consumers rather than vertical differentiation. This discussion is important
for this paper’s purposes as if these relationship-induced contracts reflect vertical product differentiation,
then they will just get reflected in physical TFP differences which broadly capture product quality differ-
ences in addition to technical efficiency (process innovation) differences. And if they capture horizontal
differentiation, then di,t - which, as I argue above and in further detail in Section 4.2 and Appendix A, can
be controlled for in my analysis - will embody them.
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the demand structure from Equation (3) that is relevant to this paper is now given by

Pi,t = edi,c(i),t Zψ−1
i,t , (4)

where now di,c(i),t replaces di,t. This conceptual representation of the demand shock motivates my

inclusion of county-level fixed effects in the empirical analysis so as to control for di,c(i),t, which in

turn facilitates the suitability of the identification of the cleansing effect.

Representation of Nominal Output. Since Yi,t = Pi,t,ZZi,t, we can relate nominal output Yi,t

to output price and labor and capital inputs as follows:

Yi,t = Pi,t Ai,tL
αL
i,t KαK

i,t . (5)

Combining Equation (5) with Equation (4) yields the following structural expression for nominal

output:

Yi,t = edi,c(i),t Aψ
i,tL

αL+ψ−1
i,t KαK+ψ−1

i,t . (6)

The structural representation from Equation (6) will be useful in facilitating the examination of the

suitability of my estimation framework that is done in Appendix A.

Definition of Aggregate TFP. The literature studying manufacturing establishments defines

aggregate TFP as a weighted average of establishments’ TFPs where the weights are defined on

either an output, composite input, or employment basis, depending on the associated research’s

objective and data availability . (See Table 8.1 from Foster et al. (2001) for a good review of the

types of aggregate TFP indices used in the literature. Foster et al. (2001) show that these activity-

weighted indices are similar using output, composite input, or employment weights.) I follow the

recent works by Foster et al. (2016) and Decker et al. (2020) and define the aggregate TFP index,

denoted by at, as the following employment-weighted TFP index:

at ≡
I

∑
i=1

wi,tai,t, (7)

where wi,t =
Li,t
Lt

is the employment share in aggregate employment of establishment i and ai,t is

the log of establishment i’s TFP (Ai,t) in deviation from industry mean.
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3.2 Micro-Level and Aggregate Cleansing Effects
3.2.1 Micro-Level Cleansing Effect

Following Foster et al. (2016) and Decker et al. (2020), I define the micro-level cleansing effect

as the effect of establishment-level initial TFP on establishment-level future employment growth:

the larger this effect is, the more cleansing there is as resources are shifted from low-TFP establish-

ments to high-TFP ones. This definition draws on the theoretical insight from canonical models

of firm dynamics that producers with higher initial TFP are expected to see higher future employ-

ment growth (see, e.g., Jovanovic (1982), Hopenhayn (1992), Hopenhayn and Rogerson (1993), and

Ericson and Pakes (1995)). To formally define the micro-level cleansing effect, a theory-consistent

true specification for future employment growth is required; this is what I turn to next.

True Specification for Future Employment Growth. Appendix A lays out a quite generic dy-

namic labor demand framework which produces the following true specification for employment

growth from period t to period t + h (denoted by gi,t,t+h, where t = 1929 and h = 2, 4, 6):

gi,t,t+h = β1,hai,t + β2,hli,t + β3,hki,t + β4,hdi,c(i),t + εi,t+h, (8)

where ai,t, li,t, and ki,t are logs of establishment i’s physical TFP, employment, and physical capital,

respectively, with corresponding coefficients β1, β2, and β3; and di,c(i),t is the demand shock from

Equation (6) with corresponding coefficient β4,h, where c = 1, 2, ..., C (C < I) represents a location

comprising establishments whose demand shock is common owing to it being rooted in horizontal

differentiation (also see the discussion from Page 9); and εi,t+h is an error term capturing period

t + h idiosyncratic shocks to input prices and is assumed to be uncorrelated with ai,t, li,t, ki,t, and

di,c(i),t. (All variables are in terms of deviation from industry means.)

Definition of True Micro-Level Cleansing Effect. Given the true specification from Equation

(8), the true micro-level cleansing effect is defined as β1,h, i.e., the effect of initial logged TFP being

different from its industry mean on future employment growth. Theory predicts this effect to be

positive and the more positive this effect is the more cleansing is taking place as resources are

being shifted from low-TFP producers to high-TFP ones.
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3.2.2 Aggregate Cleansing Effect

The aggregate cleansing effect takes as input the micro-level cleansing effect in order to compute

the cleansing-induced change in aggregate TFP. This section explains the mapping between the

micro-level and aggregate cleansing effect objects.

Definition of Aggregate Cleansing Effect. The true aggregate cleansing effect, denoted by C, is

formulated as

Ct,t+h =
I

∑
i=1

Et
(
wi,t+h

∣∣ ai,t
)

ai,t −
I

∑
i=1

wi,tai,t, (9)

where t = 1929 and h = 2, 4, 6; and Et
(
wi,t+h

∣∣ ai,t
)

represents establishment i’s expected employ-

ment share at horizon t + h conditional on initial logged TFP (in deviation from industry mean).

Explicit Expression for Et
(
wi,t+h

∣∣ ai,t
)
. The explicit expression for this conditional expectation

as a function of ai,t is based on the micro-level cleansing effect and the relation between gi,t,t+h and

wi,t+h. Specifically, it is obtained by combining Et
(

gi,t,t+h
∣∣ ai,t

)
= β1,hai,t with the relation wi,t+h =

Li,t(1+gi,t,t+h)

∑I
i=1 Li,t(1+gi,t,t+h)

. (Optimal prediction Et
(

gi,t,t+h
∣∣ ai,t

)
= β1,hai,t is obtained from applying the latter

conditional expectations operator to the true specification from Equation (8).) This combination

leads to the following expression for Et
(
wi,t+h

∣∣ ai,t
)
:8

Et
(
wi,t+h

∣∣ ai,t
)
=

Li,t

(
1 + Et

(
gi,t,t+h

∣∣ ai,t
) )

I
∑

i=1
Li,t

(
1 + Et

(
gi,t,t+h

∣∣ ai,t
) ) . (10)

8Since wi,t+h is a nonlinear function of gi,t,t+h, it is apriori unclear that Equation (10) is sufficiently pre-
cise. However, as discussed in Appendix A.4.1, the approximation error from Equation (10) is negligible.
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Explicit Expression for Ct,t+h. Given Equation (10), I am now in position to provide the explicit

representation for Ct,t+h:

Ct,t+h =
I

∑
i=1


Li,t(1 + β1,hai,t)

I
∑

i=1
Li,t(1 + β1,hai,t)

ai,t

−
I

∑
i=1

wi,tai,t = (11)

I
∑

i=1
ai,tLi,t +

I
∑

i=1
β1,ha2

i,tLi,t

I
∑

i=1
Li,t +

I
∑

i=1
β1,hai,tLi,t

−
I

∑
i=1

wi,tai,t =

I
∑

i=1
ai,tLi,t +

I
∑

i=1
β1,ha2

i,tLi,t

I
∑

i=1
Li,t +

I
∑

i=1
β1,hai,tLi,t

−

I
∑

i=1
ai,tLi,t

I
∑

i=1
Li,t

.

The aggregate cleansing effect from Equation (11), taking as input the micro-level cleansing effect,

essentially computes the cleansing-induced change in aggregate TFP and therefore constitutes the

central object of study in this paper.

4 Methodology

This section elucidates the methodology used in the empirical analysis undertaken in this paper.

I first describe the data used in my empirical analysis. Then, I provide details for the estimation

used in the micro-level empirical approach after which I turn to presenting the estimation under-

lying the bottom-up empirical approach. Further technical details of my estimation approach are

shown in Appendix B.

4.1 Data

The data I use is from Vickers and Ziebarth (2018) and is derived from the Census of Manufactur-

ers (COM) for 1929, 1931, 1933, and 1935, the only four years from the first half of the 20th century

for which COM’s original establishment-level schedules managed to survive. The raw sample

covers 24 industries whose total value of output, establishment count, and total wage bill amount

to about 20%, 10%, and 20% of the corresponding values for the entire manufacturing sector.9

9Further details for this dataset are provided in Ziebarth (2015), Vickers and Ziebarth (2017), Ziebarth
(2020), and Benguria et al. (2020). As argued in the latter paper, while this sample is not randomly chosen,
it is nevertheless fairly representative of manufacturing as a whole. Specifically, industries that make up
this sample are similar to those industries not included in it in terms of size as measured by employment
and revenue, as well as revenue labor productivity.
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As discussed at the end of this section, after cleaning the data for my purposes the final sample

I am left with contains 20 industries with a total of 17,767 establishments. The list of these indus-

tries, along with descriptive statistics for each industry on establishment count, output value,

employment, and revenue labor productivity (the ratio of nominal output to employment), is

shown in Table 1. The total value of establishment count, output, and employment for this sample

amount to 8.4%, 14.2%, and 12.2% of the corresponding values for the entire manufacturing sector.

I now discuss in detail the main establishment-level variables I use for the empirical analy-

sis. The presence of these variables in my econometric analysis is motivated by the theoretical

framework presented in Section 3.1 and further detailed in Appendix A.1.

Nominal Output. This variable represents the nominal value of products produced in 1929.

As discussed in Footnote 7 from Ziebarth (2015), 1929 is actually the only year in which the COM

asked respondents for the value of products sold that year rather than value of products produced

that year. However, the quality check analysis from Ziebarth (2015) finds insignificant differences

between industry totals from the 1929-1935 COM data and those from outside sources and, impor-

tantly, these small differences do not behave differently for 1929. Hence, it is likely the case that

establishments simply ignored the different phrasing of the revenue question and continued to

report production-based revenue, which warrants my production-based interpretation of COM’s

1929 revenue data.

Moreover, while it is possible in principle to observe output quantities from the COM as the

schedules also provide information on physical output,10 there are two reasons for why it is prefer-

able for the purposes of this paper to use nominal output rather than physical output. First, as

noted by Ziebarth (2020), there is wider coverage for the nominal output value variable than for

the physical output variable. Second, also noted by Ziebarth (2020), many establishments produce

a number of different products thus making it not obvious how to define such establishments’ real

output levels.

10The specific digitized dataset I am using does not have information on physical output but such data
has been used in Ziebarth (2013) who utilizes establishment-level physical output data for Mississippi to
estimate the real effects of bank failures and in Vickers and Ziebarth (2021) who utilize physical output data
to analyze Establishment-level unit prices between 1929 and 1935 for over 100 manufactured goods.
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Employment. Employment (labor input) is measured by the log of number of wage earners,

where the latter represents the year average from monthly values. As discussed in Ziebarth (2020),

the COM distinguishes between wage earners and salaried employees, or roughly blue and white

collar employees. As data for the latter group lacks for all years except 1935, I focus on wage

earners for my measurement of labor input. As also discussed in Ziebarth (2020), establishments

are also asked to report on monthly manhours in only a handful of industry-years. But these

questions are mostly about things like ’average shift length’ or ’normal number of hours worked

per week.’ In addition to being rather vaguely worded, these questions are not available in every

year. Hence, I measure labor input with number of wage earners.

Physical Capital. While physical capital stock is not directly available in the COM, there is

a reasonable proxy for it in the form of electric motors’ installed horsepower (from both pur-

chased and generated electricity). Such proxy for the measurement of physical capital has been

commonly used in the literature studying historical manufacturing data (see, e.g., Allen (1977),

Bresnahan and Raff (1991), Bertin et al. (1996), Inklaar et al. (2011), and Lee (2015)). This variable

was only collected in the 1929 and 1935 COMs and for the year of interest (1929) it is available for

17,830 establishments, which is a moderately smaller sample size than the availability of the other

variables in the analysis (20,046 establishments).

Gross Margin. As explained in Appendix A.1, my bias-corrected estimate of the micro-level

cleansing effect requires a measure of gross margin. I obtain this measure from the COM as the

ratio of nominal value added (the difference between nominal output value and nominal interme-

diate input costs (costs of raw materials, fuels, and purchased electric energy)) to nominal output

value.

Employment Growth. I measure employment growth from period t to t + h for establishment

i as gi,t,t+h =
Li,t+h−Li,t

Li,t
. I generate this outcome measure for the entire sample (i.e., continuers

and exiters sample) as well as the continuers only sample. Moreover, for completeness, I also

consider an exit probability outcome variable which receives the value of one if establishment i
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exited between period t and period t + h and zero otherwise.11

Revenue Labor Productivity. Revenue labor productivity is measured as Yi,t
Li,t

, i.e., the ratio of

nominal output value to employment (number of wage earners). This variable is measured for

1929 and is used as the labor productivity variable in the descriptive analysis on the role of entry

from Section 5.4.

Sample Size. After removing establishments with negative values for any one of the output

value, employment, capital, and gross margin variables in 1929, as well as establishments miss-

ing in 1929 either one of these variables, the baseline sample I am left with contains a total of

17,767 establishments in 1929 with 11,297 of these continuing in 1931; 7,273 of these continuing

in 1933; and 6,085 of these continuing in 1935. (As mentioned above when discussing the capital

variable, this variable’s sample availability effectively dictates that of the empirical analysis with

2,248 establishments getting removed due to their lack of capital data.12)

Can TFP be Directly Measured/Estimated from COM Data? A remark is in order about

this paper’s inability to directly estimate or measure TFP (physical or revenue), thus resorting to

a two-step econometric approach which ultimately produces lower bound estimates for the true

micro-level and aggregate cleansing effects. There are two reasons for this inability. The first is

the very short time dimension of the COM, which is made even shorter for production function

estimation purposes due to capital data being available only for 1929 and 1935. And the second is

the fact that capital data lacks a measure of capital costs.

The latter very short time dimension (effectively including only two observations over time of

6,085 continuers) prevents a suitable panel based production function estimation that is capable

11Results are similar when I follow the literature’s standard practice, that began with Davis et al. (1996),
and measure employment growth from period t to t + h for establishment i as gi,t,t+h = Li,t+h−Li,t

0.5(Li,t+h+Li,t)
. However,

while the baseline employment growth measure produces a negligible approximation error when comput-
ing the conditional expectation of future employment share and associated aggregate cleansing effect (see
Appendix A.4.1), I have found that this is no longer the case for the Davis et al. (1996) growth measure due
to the much greater nonlinearity it induces in the employment share function.

12The capital data contains 63 more establishments than the baseline 17,767 establishment sample because
county-level identifiers are missing for 63 establishments of the 17,830 establishments for which capital data
is available.
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of addressing input factor endogeneity issues using time series instruments as in Basu et al. (2006)

or proxy variables as in Olley and Pakes (1996) and Levinsohn and Petrin (2003). And the lack

of capital cost data prevents using cost shares to calibrate the factor elasticities of the production

function. (Regardless of this technical inability to use cost shares for estimation, a material draw-

back of such approach is that it assumes no adjustment costs for the associated inputs, which is

clearly at odds with the general dynamic labor demand model underlying this paper’s empiri-

cal approach which assumes labor adjustment costs (see Appendix A.1 for such generic model).

As noted in Syverson (2011), this issue can be somewhat alleviated by taking time averages of

cost shares to try to smooth out the idiosyncratic adjustment-cost-driven element. However, this

requires a sufficiently long time dimension that is lacking from my data.)

4.2 Micro-Level Econometric Framework

This econometric framework aims at estimating the effects of initial establishment-level TFP on

subsequent employment growth and exit probabilities. Canonical models of firm dynamics gen-

erally predict that, conditional on firm size, exit is more likely for low-TFP establishments and

that establishment growth is increasing in TFP (see, e.g., Jovanovic (1982), Hopenhayn (1992),

Hopenhayn and Rogerson (1993), and Ericson and Pakes (1995)). Of particular interest to this

econometric framework is the effect of initial TFP on future employment growth as this effect in

turn constitutes the true micro-level cleansing effect (β1,h from Equation (8)).

Ideally, to estimate these effects, one would need to observe physical TFP and use it as an

explanatory variable for the employment growth and exit outcome variables. Alternatively, as is

done in most of the literature, one would estimate the combined effects of physical TFP shocks

and output demand shocks on these variables by using revenue TFP as the explanatory variable

for these outcome variables. Such alternative and common estimation approach would require

interpreting the estimated effects as arising from both TFP and demand shocks.

Given the very low (biennial) frequency of my data and its associated short time dimension,

which is further exacerbated by the lack of capital data for 1931 and 1933, it is beyond the capacity

of this paper to properly and reliably estimate a revenue TFP measure (let alone a physical one

given the absence of prices from the data). See Page 16 for a more detailed discussion on the
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inability of this paper to appropriately estimate physcial/revenue TFP which also touches on the

issue of lacking capital cost data.

Instead, as explained in the remainder of this section, I take a different identification approach

which concedes this paper’s incapacity to consistently estimate the micro-level cleansing effect

and consequently turn to develop a conservative estimation framework that can deliver a lower

bound for the true micro-level cleansing effect. This is done with a two-stage estimation proce-

dure where the first regression regresses nominal output on industry and county fixed effects,

employment, and physical capital; and in the second stage the residual from this regression is

then used as the explanatory variable in a regression with future employment growth and exit

probabilities as the outcome variables. Granted, the first step regression clearly yields a biased

TFP series; nevertheless, this bias has a specific nature which guides the incorporation of a simple

theory-consistent bias correction into the raw estimation procedure, ultimately leading to a bias-

corrected estimated micro-level cleansing effect that is downward biased. This in turn renders the

estimation informative about the true micro-level cleansing effect by providing an estimate that is

a lower bound for its true counterpart.

Specification. I estimate the following two-equation system:13

yi = γind + γcounty + γ1li + γ2ki + ui, (12)

gi,h = γme,h + δhûi + vi,h, (13)

where yi, li, and ki are logs of nominal output, employment, and capital in 1929; γind are industry

fixed effects; γcounty are county fixed effects, which conceptually correspond to demand shock

di,c(i),t from Equation (6); and, in accordance with the structural representation of nominal output

from Equation (6), ui is a residual that conceptually corresponds to ψai and has standard deviation

σ1; gi,h is either employment growth for continuers and exiters, employment growth for continuers

only, or exit dummy variable, with all three outcome variables measured from 1929 to 1929 + h

(h = 2, 4, 6) for the i’th establishment; γme,h are multi-establishment firm fixed effects, intended to

13Since t = 1929 and subsequent years are 1931, 1933, and 1935 (i.e., h = 2, 4, 6), I omit the time index
from the estimated micro-level specification from System (12)-(13) for conciseness.
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account for network effects in multi-establishment firms which appear to be important in the Great

Depression (Loualiche et al. (2019)) and whose inclusion accords with my conceptual treatment

of an establishment as an autonomous unit;14 ûi is the estimated residual from Equation (12) with

corresponding coefficient of interest δh; and vi,h is a residual capturing idiosyncratic input price

shocks (see theoretical framework from Appendix A) with standard deviation σ2,h.

For future reference, let the stacked A = [γind, γcounty, γ1, γ2]′ and Bh = [γme,h, δh]
′ matrices

represent the coefficient matrices from Equations (12) and (13), respectively. Hence, the parame-

ters of these two equations can be summarized by pairs A and σ1 and Bh and σ2,h, respectively.

Identification. δh is the coefficient of interest in System (12)-(13). The motivation for this system

comes from Equation (6), which shows that nominal output is driven by the labor and capital

input variables in Regression (12) as well as unobserved physical TFP and demand shock, where

the former is raised to the power of ψ which is equal to one plus the inverse elasticity of output

demand and the latter is controlled for by county-level fixed effects γcounty.

The discussion from Page 9 motivates the use of γcounty to control for demand shock di,c(i),t,

where c(i) represents the mapping between establishment i and location c with this location as-

sumed to be sufficiently small such that the demand shock is equal across all establishments be-

longing to this location. The crux of this motivation lies in my treatment of the demand shock as

representing horizontal differentiation with any additional unaccounted for price differences re-

flecting vertical-differentiation-induced differences (i.e., product quality differences). These unac-

counted for quality-induced differences, which therefore get absorbed into my micro-level cleans-

ing effect estimate, imply a broader interpretation of my results as capturing both process- and

product-innovation-induced cleansing effects. There are a total of 1,992 counties over which the

17,767 establishments are dispersed in 1929, which is an arguably sufficiently large number of

locations for capturing well horizontal-differentiation-induced demand differences.

As formally shown in Appendix A, the fact that the true model likely possesses imperfectly

elastic output demand (i.e., ψ < 1) renders the OLS estimation of δh upward biased for the true

14There are a total of 1,031 such fixed effects for the specification that includes both continuers and exiters,
i.e., there are 1,031 multi-establishment firms in the sample. (These firms own an average number of 17.2
establishments.)
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effect of ai,t on gi,t,t+h (i.e., β1,h from Equation (8)).15 Nevertheless, Appendix A.1 puts forward

a theory-consistent bias correction procedure, amounting to multiplying the raw nominal output

variable for each industry by the inverse of the industry-specific cross-sectional average of gross

margin, which in turn produces a downward biased estimate of the true micro-level cleansing

effect. As such, this estimate can be viewed as a lower bound for its true counterpart, thus al-

lowing my econometric approach to produce conservative results that are in turn meaningfully

informative about the true micro-level cleansing effect.

Estimation and Inference. To facilitate inference for the bottom-up estimation procedure (to

be discussed in the next section), I estimate System (12)-(13) with a Bayesian estimation and in-

ference procedure that assumes a diffuse normal-inverse Wishart prior distribution for the regres-

sions’ coefficients and residual variance. Bayesian inference is suitable for my setting because

there are effectively three estimation stages in my model, with the first two corresponding to

Equations (12) and (13) and the third concerning the estimation of the cleansing-induced change

in aggregate TFP (to be discussed in the next section) which is in turn a highly nonlinear function

of the estimated coefficient of interest from the micro-level regression (i.e., δh from Equation (13)).

The Bayesian procedure I utilize in this paper is appealing because it can deal with the latter non-

linearity while also being able to conveniently integrate clustering of the standard errors at the

industry level into the estimation of Equations (12) and (13); account for estimation uncertainty

for these equations and for the estimation of the aggregate cleansing effect; and use uninformative

priors all along.

To account for estimation uncertainty in ûi, I perform a two-stage Bayesian estimation proce-

dure. In the first stage, I compute ûi from Equation (12) conditional on a posterior draw of this

equation’s coefficients. Then, in the second stage of this procedure, I use this estimated ûi as an

explanatory variable in Regression (13) from which the posterior draw of δ̂h (the estimate of δh)

can be estimated. Doing this a sufficiently large number of times produces a posterior distribution

for δ̂h that properly accounts for estimation uncertainty in ûi.

15In the analysis that shows this result, which appears in Appendix A.2, I differentiate terminologically
between the non-bias-corrected and bias-corrected estimation procedures. For ease of exposition here, I
refrain from this notational extension and simply describe in words the simple bias-correction procedure.
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To account for correlation of the error term within industries, I apply a correction to the stan-

dard errors within my Bayesian estimation procedure for both its stages that clusters them at the

industry level. In doing so I follow the suggestion from Müller (2013) to increase estimation pre-

cision in the presence of a misspecified likelihood function (as in mine) by replacing the original

posterior’s covariance matrix with an appropriately modified one. Appendix B provides full tech-

nical details of my estimation and inference procedure.

One final remark is in order about the reason for doing this two-stage estimation procedure as

opposed to estimating it via a single regression that simply regresses future employment growth

on yi, li, ki, γind,h, γcounty,h, and γme,h. While these two estimation approaches are asymptotically

equivalent, the merit of the two-stage estimation procedure lies in its facilitation of appropriate

inference for the bottom-up econometric approach which estimates the aggregate cleansing effect.

In particular, this estimation procedure is able to explicitly account for uncertainty in the estima-

tion of ui which in turn serves as an important input for the estimation of the aggregate cleansing

effect.

4.3 Bottom-Up Econometric Framework

The objective of this econometric framework is to estimate the aggregate cleansing effect, i.e.,

Ct,t+h from Equation (11). Since t = 1929 and subsequent years are 1931, 1933, and 1935 (i.e.,

h = 2, 4, 6), I will denote the estimate of Ct,t+h concisely by Ĉh. To obtain this estimate, for every

posterior draw of δh from the estimation of System (12)-(13) that includes as outcome variable

employment growth (either for continuers and exiters or continuers only), I compute ĝi,h = δ̂hûi

and then use this predicted value to generate the predicted employment share in period 1929 +

h, i.e., ŵi,h =
Li(1+ĝi,h)

∑I
i=1 Li(1+ĝi,h)

, where ŵi,h is establishment i’s predicted employment share for year

1929 + h and Li is establishment i’s employment in 1929. I then use these predicted employment
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share weights to compute the posterior draw of Ĉh from the following expression:

Ĉh =
I

∑
i=1


Li(1 + δ̂hûi)

I
∑

i=1
Li(1 + δ̂hûi)

ûi

−
I

∑
i=1

wiûi = (14)

I
∑

i=1
ûiLi +

I
∑

i=1
δ̂hû2

i Li

I
∑

i=1
Li +

I
∑

i=1
δ̂hûiLi

−
I

∑
i=1

wiai =

I
∑

i=1
ûiLi +

I
∑

i=1
δ̂hû2

i Li

I
∑

i=1
Li +

I
∑

i=1
δ̂hûiLi

−

I
∑

i=1
ûiLi

I
∑

i=1
Li

.

I generate 1000 such posterior draws from which I am then able to estimate the median

cleansing-induced aggregate TFP log point change along with the 95% posterior bands of this

estimate. The same is done for the coefficient of interest from Equation (12) (δh). (Appendix B con-

tains the specific details of the posterior simulator I use to obtain these estimates.) Importantly,

Appendix A.4.3 shows through a suitable simulation experiment that Ĉh underestimates

C1929,1929+h. Under a plausible calibration for ψ, the parameter that governs the inverse output

demand elasticity (see Equation (4)), this underestimation is in the order of the true aggregate

cleansing effect being 39%-76% higher than its estimated counterpart. More generally, the true

aggregate cleansing effect is meaningfully higher than its estimated counterpart for essentially all

values of ψ.

That Ĉh meaningfully underestimates its true counterpart implies that my aggregate cleansing

effect estimate constitutes a conservative estimate for its true counterpart and, as such, it provides

a loose lower bound for it. My econometric approach can therefore be interpreted as an estima-

tion approach that concedes that it can not consistently estimate the true, sought after aggregate

cleansing effect but this concession is accompanied by an econometric conservatism that can still

produce an informative estimate for this effect by providing a lower bound for it.

5 Empirical Evidence

This section first presents the baseline empirical results from both the micro-level and bottom-up

econometric frameworks. Then, it briefly discusses results from three robustness checks, deferring

the detailed presentation of these results to Appendix C. Finally, the section ends with an analysis

of the role of entry.
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5.1 Baseline Evidence: Micro-Level Econometric Framework

The baseline results from estimation of Equation (13) appear in the first column of Figure 2, which

shows the estimated median (solid line) and 95% posterior band (dashed lines) values for the

effect of ûi. In computing this effect I normalize ûi by its estimated standard error. Since ûi is

an estimate of 1929 logged TFP,16 normalizing it by its standard deviation implies that we should

interpret its effect on this paper’s three considered outcome variables as arising from being above

the mean industry logged TFP by one standard deviation. These outcome variables are measured

from 1929 to 1929+ h, i.e., the first column of Figure 2 effectively shows the estimated median and

95% posterior band values for δ̂h (for h = 2, 4, 6) from Equation (13).

The effects are both statistically and economically significant at all of the three considered

horizons. In particular, considering the entire sample (i.e., including both continuers and exiters),

being above the mean industry logged TFP by one standard deviation implies having higher em-

ployment growth of 7.2, 5.9, and 5.6 percentage points for the two-, four-, and six-year horizons,

respectively; considering just the continuers, i.e., conditional on survival, these estimates are also

very meaningful at 9.1, 5.9, and 8.9 percentage points. Effects are also quite meaningful for exit

probabilities as being above the mean industry logged TFP by one standard deviation implies a

lower exit probability by -1.3, -2.1, and -1.6 percentage points in 1931, 1933, and 1935, respectively.

5.2 Baseline Evidence: Bottom-Up Econometric Framework

This section reports the results for Ĉh from Equation (14), i.e., the cleansing-induced log point

change in aggregate TFP. This aggregate cleansing effect will inform us about the implications of

the micro-level cleansing effect reported in the previous section for aggregate TFP.

The baseline results from this estimation appear in the second column of Figure 2, which shows

the estimated median (solid line) and 95% posterior band (dashed lines) values for Ĉh for the

entire sample (continuers and exiters) as well as only continuers. The estimated effects are very

meaningful for both samples, implying large increases in aggregate TFP relative to 1929 aggregate

TFP level: for the full sample, aggregate TFP rises by 6.5, 5, and 4.8 log points in 1931, 1933, and

16Note that ûi is already in deviation from industry mean given that Equation (12), from which it is
estimated, includes industry fixed effects.
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1935, respectively; and, for the only continuers sample, aggregate TFP rises by 6.7, 4.1, and 6.3 log

points in 1931, 1933, and 1935, respectively. In addition to the considerable magnitude of these

numbers, we also learn from them about the persistence of the estimated aggregate cleansing

effect given that the 1935 effects are both statistically and economically significant.

5.3 Robustness Checks

Appendix C examines the robustness of the baseline results for δ̂h and Ĉh along three dimensions.

The first considers an alternative formulation of the production structure from Section 3.1 which

removes the Leontief production structure assumption and allows the intermediate input factor

to be substitutable for the other input factors. The second deals with the issue of cross-sectional

variation in input utilization. And the third concerns the application of the two-way standard

error clustering approach from Cameron et al. (2011) to my setting, extending my baseline one-

way clustering at the industry level to also allow for error dependence within states (in addition to

within industries). The results from these three robustness checks, presented in Appendix C, are

very similar to the baseline ones, bolstering confidence in this paper’s message about a meaningful

aggregate cleansing effect for the Great Depression period at hand.

5.4 The Role of Entry

The analysis so far has abstracted from the role of entry in the cleansing-induced effect of the

Great Depression’s period at hand. One may be concerned that this paper’s message about this

cleansing effect is overstated in case entrants’ TFP levels fall meaningfully below those of exiting

establishments. This concern is based on the reasonable viewpoint that entrants are effectively the

replacers of exiters, and therefore if the latter are pushed out by a downturn-induced cleansing

mechanism but at the same time are replaced by less productive entrants then this would in turn

overstate the magnitude of the latter mechanism.

Unfortunately, this paper’s data does not allow for a consistent estimation of establishments’

TFP (also see related discussion on Page 16). An equally relevant limitation of my data for the

analysis of the role of entry is that physical capital data is missing from 1931 and 1933 and hence

for those years it is not possible to obtain any reasonable TFP measure. Hence, in the analysis
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that follows, I provide direct evidence on the role of entry by using revenue labor productivity

(RLP) as a proxy for TFP. Since the analysis of the role of entry is descriptive regardless of the

TFP measurement issue, as opposed to the causal analysis done so far in the paper, my using RLP

instead of TFP for the role of entry is less problematic than if I were to use it in my cleansing effect

based causal analysis as a direct measure of TFP. And its use as a proxy for TFP receives support

from the evidence from Foster et al. (2001, 2006) that within-industry relative RLP measures are

strongly correlated with within-industry relative revenue TFP (which in turn was shown by Foster

et al. (2008) to be strongly correlated with physical TFP).

Specification. To provide direct evidence on the possible role of entrants in overstating the

message of this paper, I need knowledge about entrants’ RLP levels relative to those of exiters.

Toward this end, I study a sample that includes only entrants and exiters from 1929 to subsequent

years and estimate the following linear probability regression:

Di,h = γind,h + γcounty,h + γme,h + χhrlpi,h + ei,h, (15)

where Di,h is a dummy variable that obtains one (zero) if the i’th establishment entered (exited)

from 1929 to 1929 + h, with h = 2, 4, 6; γind,h are industry fixed effects; γcounty,h are county fixed

effects; γme,h are multi-establishment firm fixed effects, intended as in the baseline case to account

for network effects in multi-establishment firms which appear to be important in the Great De-

pression (Loualiche et al. (2019)); and rlpi,t is the deviation of the log of establishment i’s 1929

revenue labor productivity level (measured as the log of nominal output per wage earner) from

industry mean and normalized to have unit standard deviation, with χh being the coefficient of

interest in the regression; and ei,h is the residual.

Since there is no meaningful way by which to convert labor and physical capital inputs of

entering establishments (which are observed in period 1929 + h) into 1929 (the period in which

exiting establishments’ inputs are observed) levels, i.e., the two groups’ input variables can not

be made comparable, I refrain from adding to Regression (13) the labor and capital variables that

were included in the baseline case. This issue of course begs the question of how entering estab-

lishments’ RLP levels are converted to 1929 levels. I implement a simple solution for this issue,
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which can not be applied to the physical input variables, and simply multiply entering establish-

ments’ RLP levels by the ratio of the CPI in 1929 to the CPI in period 1929 + h.17 This normaliza-

tion, which exploits the fact that measured establishment-level RLP is nominal output per worker,

brings entering and exiting establishments’ observed RLP levels into common grounds and thus

facilitates a proper comparison between entering and exiting establishments’ RLP levels.

Results. The results from estimation of Equation (15) appear in Figure 3 and show the median

(solid line) and 95% posterior bands (dashed lines) of the estimated χh (χ̂h) from Equation (15). An

establishment whose logged RLP is one standard deviation above industry mean is 2.5 percentage

points less likely to be an entrant from 1929 to 1931.18 While establishment age is not available

from the COM data, it is obvious that entering establishments from 1929 to 1931 are at most two

years old. Hence, assuming exiting establishments are on average older than these entering estab-

lishments, this result possibly speaks to some form of costly entry where there is some delay until

young establishments catch up the establishments they effectively replaced in the market place in

terms of RLP.19

In accordance with this costly entry view, an establishment whose logged RLP is one standard

deviation above industry mean are 0.9 and 0.7 percentage points more likely to be an entrant from

1929 to 1933 and from 1929 to 1935, respectively (the 0.7 estimate is only marginally significant).

That is, making the reasonable assumption that this result reflects older establishments than the

corresponding 1931 result, it appears that aging of entering establishments allows them to not

only catch up exiting establishments in terms of RLP but also significantly surpass them. That

the coefficient for 1935 is only marginally significant is consistent with the notion that, ultimately,

entering establishments tend to converge to exiting establishments in terms of their RLP.

17CPI is taken as the annual average of monthly CPI values from the NBER Macrohistory Database.
Before taking this average, I seasonally adjust the monthly CPI data with an X-13 seasonal adjustment
procedure.

18There are a total of 11,502 exiting and entering establishments for 1929-1931, with 6,470 and 5,032 exiting
and entering establishments, respectively; the corresponding numbers for 1929-1933 are 14,885, 10,530, and
4,335; and for 1929-1935 they are 20,148, 11,682, and 8,466.

19Results are similar using value added productivity (nominal value added per worker) instead of RLP.
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Summary. In sum, while there is some level of initially counteracting entry mechanism for the

cleansing mechanism, it fully reverses in the subsequent biennial periods and even becomes sig-

nificantly enhancing for the 1929-1933 aggregate cleansing effect. However, it is noteworthy that

both the 1929-1931 and 1929-1933 estimates do not bear quantitatively meaningful aggregate im-

plications. To see this, take for example the -2.5 percentage point estimate for 1929-1931 and as-

sume for simplicity that χ̂1 = −0.437, where 43.7% is the unconditional probability of being an

entrant in the 1929-1931 sample, corresponds to 1929-1931 entrants’ logged RLPs all being one

standard deviation below industry mean. (This is of course just one example of entrants’ RLP dis-

tribution which would generate χ̂1 = −0.437 but is chosen here for illustrative purposes owing to

its simplicity.) I.e., the actual 1929-1931 χ̂1 = −0.025 estimate can be interpreted as implying that

94.3% (1− 0.025
0.437 ) of entrants have logged RLPs equal to industry mean (with the industry of course

including exiters) while only 5.7% of entrants have one standard deviation lower logged RLP than

industry mean. In other words, both the 1929-1931 χ̂1 = −0.025 and 1929-1933 χ̂1 = 0.009 esti-

mates essentially imply that only a small share of entrants exhibits RLP differences with respect

to exiters; the bulk of the RLP distributions for these two groups exhibits similar RLPs.20

Hence, considering the above-explained limited quantitative importance of the χ̂1 = −0.025

estimate, the results from this section do not seem to imply that the message of this paper is

overstated because of a counteracting entry-induced mechanism. The vast majority of entrants’

and exiters’ RLP distribution is similar and hence a meaningful role for either a counteracting or

enhancing entry-induced mechanism can be effectively ruled out.

6 Reconciliation of Results with Aggregate TFP Dynamics

This paper estimates a cleansing-induced change in aggregate TFP in the order of 3.6-5.1 log points

for the 1929-1935 period. Since aggregate TFP changes generally capture both an aggregate exoge-

nous technology change as well as input-reallocation-induced changes, it is important to discuss

this paper’s results in the context of the broader economy’s aggregate TFP behavior from the 1929-

20Doing the exercise above for χ̂1 = 0.009 implies that the latter estimate can be interpreted as implying
that 97.9% of entrants have logged RLPs equal to industry mean (with the industry of course including
exiters) while only 2.1% of entrants have one standard deviation higher logged RLP than industry mean.
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1935 period. Toward this end, this section examines this paper’s significant aggregate cleansing

effect through the lens of the behavior of two TFP measures for the non-farm private sector con-

structed from Kendrick (1961, 1973)’s interwar data, as reported in Watanabe (2016). The first

measure is Kendrick (1961, 1973)’s own TFP measure which is a standard Solow residual while

the second measure is Watanabe (2016)’s purified TFP measure which adjusts for increasing re-

turns to scale, unobserved input utilization, and intermediate inputs.

Kendrick (1961, 1973)’s TFP Measure. This TFP measure declined by more than 10% during

1929-1933 but then increased by more than 15% over the period of 1933-1935 to stand at a roughly

5% higher level in 1935 relative to 1929. While the 1933-1935 TFP increase is easy to reconcile

with this paper’s results, the 1929-1933 decline in this TFP measure is hard to reconcile with the

considerable aggregate cleansing effect found in this paper for this period.

But the pioneering work from Basu et al. (2006), which emphasized the importance of purg-

ing raw TFP measures of utilization- and nonconstant-returns-induced changes, suggests that

Kendrick (1961, 1973)’s TFP measure likely captures additional factors such as input utilization

and nonconstant returns to scale above and beyond the variation from aggregate exogenous tech-

nology and input-reallocation-induced changes. This is precisely the motivation for Watanabe

(2016)’s desire to account for these biasing elements when constructing his aggregate purified TFP

measure, which I turn to discuss next.

Watanabe (2016)’s TFP Measure. Following Basu et al. (2006)’s methodology, Watanabe

(2016) constructs a purified TFP measure which differs from Kendrick (1961, 1973)’s TFP measure

in that it accounts for inter-industry input reallocation, increasing returns to scale, unobserved

input utilization, and intermediate inputs.21 The behavior of this series over its associated sample

of 1891-1966 is depicted in Figure 1, already referred to at the start of this paper.22 This purified

TFP measure grew by nearly 6% from 1929 to 1933 and increased further by an astounding rate

of more than 28% from 1933 to 1935, leading to an overall growth rate for the 1929-1935 period

21Also see Huo et al. (2020) for the importance of properly controlling for unobserved input utilization
for TFP measurement in an international context.

22I thank Shingo Watanabe for kindly sharing with me his purified TFP data.
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of nearly 36%.23 This dramatic increase in purified TFP over the 1929-1935 period, while likely

also driven by technological advances, is still broadly consistent with the view that a considerable

aggregate cleansing effect - coming from favorable intra-industry input reallocation - took place

during this period.

Summary. Both TFP measures considered in this section, while accounting for inter-industry

input reallocation changes via aggregation from industry-level TFP measures, do not account for

intra-industry input reallocation changes. These changes, in turn, are precisely what this paper

focuses on and estimates. While I acknowledge that technological advance also likely contributed

to the considerable rise in Watanabe (2016)’s purified TFP measure over the 1929-1935 period, the

fact that this measure does not account for intra-industry reallocation effects sits reasonably well

with the intra-industry cleansing-induced effect I estimate in this paper.

7 Conclusion

This paper has provided robust evidence on a significant and persistent aggregate cleansing effect

for the Great Depression (1929-1935) period. To obtain this evidence, I used a suitable micro-level

data based econometric framework whose estimated aggregate cleansing effect is a loose lower

bound for its true counterpart. My results deliver a baseline cleansing-induced effect on aggregate

TFP of 5.1, 3.6, and 3.8 log points in 1931, 1933, and 1935, respectively. These material cleansing

estimates reveal a new and hitherto overlooked dimension of the Great Depression period.

While data limitations prevent me from comparing the cleansing effects from 1929

establishment-level TFPs to those from other base years, this paper’s considerable estimated

aggregate cleansing effects have potentially meaningful policy implications given that policy

intervention is often though of as having been lackluster for this period. In particular, while

beyond the scope of this paper, studying the role of policy intervention (or lack thereof) in the

Great Depression in shaping this paper’s cleansing evidence constitutes an interesting avenue of

future research. Such line of research can contribute to our understanding of the fundamental

23The average annual growth rate of purified TFP over the entire sample (1891-1966) is 2%. When ex-
cluding the 1929-1935 period, this number drops by 20% to 1.6%.
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issue of whether policies directed at reducing the short-term severity of large downturns may at

the same time also hinder the type of cleansing effects found in this paper.
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Table 1: Descriptive Statistics.

Industry Establishment
Count

Output
Value

(Millions
of $)

Employment
(Thou-
sands)

Revenue
Labor Pro-
ductivity

($)

Cement 162 259.79 32.26 8,052.46
Concrete Products 1,756 82.23 14.39 5,714.41
Glass 239 299.12 64.81 4,615.6
Beverages 4,150 252.32 25.95 9,722.06
Steel Works 335 2,211.74 123.28 17,940.51
Ice Cream 2,506 313.76 21.3 14,732.24
Ice Manufactured 2,762 170.72 24.15 7,068.54
Macaroni 213 43.03 3.72 11,569.49
Malt 18 11.02 0.25 43,542.13
Agricultural Implements 229 274.66 41.02 6,696.33
Sugar Refining 21 507.39 13.91 36,472.21
Aircraft and Parts 123 71.67 14.63 4,898.94
Cotton goods 1,181 1,502.05 410.07 3,662.95
Linoleum 7 55.38 5.54 9,989.7
Planing Mills 3,258 446.65 71.16 6,277.06
Bone Black 26 10.12 0.98 10,300.05
Soap 174 182.47 9.63 18,944.31
Petroleum Refining 299 2,519.57 73.84 34,124.3
Rubber Tires 21 14.06 1.82 7,712.24
Radio Equipment 287 787.47 129.46 6,082.79

Total 17,767 10,015.22 1,082.17 9,254.75

Notes: This table provides descriptive statistics for this paper’s baseline sample of 20 in-
dustries and 17,767 establishments they contain. All variable values are for 1929. Output
value corresponds to the value of produced output; employment refers to number of
blue-collar workers (year average from monthly values); and revenue labor productivity
is the ratio of output value to employment (the ’total’ value for this variable divides the
sample’s total output value by total employment).
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Figure 1: Purified TFP.
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Notes: This figure shows the purified TFP series from Watanabe (2016) which accounts for
increasing returns to scale, unobserved input utilization, and intermediate inputs. The
series runs through 1891-1966 with the shaded area indicating this paper’s sample period
of 1929-1935. The series is in logged terms and normalized to 100 at the start of its sample
period.
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Figure 2: Baseline Model: Cleansing-Induced Effect.
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Notes: The first column of this figure presents the estimated median (solid line) and
95% posterior band (dashed lines) values for the effect of being above the mean indus-
try logged TFP by one standard deviation for this paper’s three considered outcome
variables: employment growth for continuing and exiting establishments, employment
growth for only continuing establishments (i.e., growth conditional on survival), and exit
dummy variable that receives one if the corresponding establishment exited in the rel-
evant subsequent period and zero if otherwise. These outcome variables are measured
from period 1929 to 1929 + h (for h = 2, 4, 6), i.e., the first column effectively shows the
estimated median and 95% posterior band values for δh from Equation (13). The second
column shows the estimated median and 95% posterior band values for Ĉh from Equation
(14) for both employment growth for continuing and exiting establishments and employ-
ment growth for only continuing establishments. Horizon (2 years, 4 years, 6 years) is
on the x-axis. Micro-level cleansing effects and effect on exit probability are in terms of
percentage point change; aggregate cleansing effects are in terms of log point change.
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Figure 3: Comparison of Entrants’ and Exiters’ Revenue Labor Productivity Levels.
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Notes: This figure presents the estimated median and 95% posterior band values for χh
from Equation (15), which represents the effect of being above the mean industry logged
revenue labor productivity by one standard deviation on the probability of being an en-
trant from 1929 to 1929 + h with the complementary event being an exiter from 1929 to
1929 + h (h = 2, 4, 6). Entrants’ revenue labor productivity levels, which are observed in
period 1929+ h, are brought to common grounds with exiters’ revenue labor productivity
levels, which are observed in 1929, by multiplying the former by the ratio of the CPI in
1929 to the CPI in period 1929 + h. Horizon (2 years, 4 years, 6 years) is on the x-axis.
Effects are in terms of percentage point change.
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Appendix A Suitability of Estimation Approach

The general environment described in Section 3.1 sufficed at describing the production and de-

mand structure underlying the conceptual framework of this paper. While this was sufficient for

fulfilling that section’s purpose of forming a general conceptual base and guide for this paper’s

empirical analysis, the setting from Section 3.1 can be easily extended to a dynamic labor demand

model with labor adjustment costs that in turn generates a general representation for employment

growth which can facilitate a formal examination of the suitability of this paper’s estimation ap-

proach for the identification of the micro-level and aggregate cleansing effects. This Appendix

begins with a general depiction of such extension and proceeds by taking its implications as an

input for the subsequent analysis of the suitability of this paper’s estimation approach.

A.1 Theoretical Motivation for Empirical Specification and ψ Measure-
ment

Recall the expression for nominal output implied by the production and demand structure of

Section 3.1 (i.e., Equation (6)):

Yi,t = edi,c(i),t Aψ
i,tL

αL+ψ−1
i,t KαK+ψ−1

i,t . (A.1)

As I show in the next section, regressing nominal output on the variables appearing in Equation

(A.1) (i.e., di,c(i),t (demand shock), Li,t (employment), and Ki,t (capital)), and then regressing future

employment growth on the residual from the latter regression results in an inconsistent estimate

for the true micro-level cleansing effect whose inconsistency is a function of ψ.

Nevertheless, a standard and rather generic dynamic labor demand model, which also serves

as theoretical motivation for this paper’s empirical micro-level specification, allows me to obtain

a downward biased measure of ψ. This in turn facilitates the embedding of a bias correction pro-

cedure into my estimation in a way that produces a downward biased estimate of the true micro-

level cleansing effect. As such, this bias correction allows me to obtain a conservative estimate

of the true micro-level cleansing effect which can be viewed as a lower bound of this effect. No-

tably, this bias correction is not relevant to the estimation of the aggregate cleansing effect, which
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manages to produce a lower bound estimate for its true counterpart using the non-bias-corrected

micro-level cleansing effect estimate as the basis for the aggregate one.

I now turn to present this general dynamic labor demand model which in turn builds on the

production and demand structure environment from Section 3.1. (This section’s notation follows

that from Section 3.1.)

A.1.1 Dynamic Cost Minimization

Optimization Problem. Denote the minimal value of discounted total costs of establishment

i in period t by Vi,TC(Ai,t, Li,t−1, Ki,t). Considering the production structure environment from

Section 3.1, and assuming establishment i takes input prices as given,24 this minimal value is

obtained from the solution to the following Lagrangian-form Bellman equation:

Vi,TC(Ai,t, Li,t−1, Ki,t−1) = min
Mi,t,Li,t,Ki,t

[Pi,t,M Mi,t + Wi,tLi,t + C1(Li,t, Li,t−1)+ (A.2)

C2(Ki,t, Ki,t−1) + Ri,tKi,t + µi,t(Zi,t − Ai,tL
αL
i,t KαK

i,t ) + κi,t(Zi,t − ϕMi,t) + βEtVi,TC(Ai,t+1, Li,t, Ki,t)],

where (in terms of terminology first seen here) Pi,t,M is the price of intermediate input; Wi,t is nom-

inal wage per employee paid by establishment i in period t; C1(Li,t, Li,t−1) and C2(Ki,t, Ki,t−1) are

labor and capital adjustment cost functions which are general enough to have both convex and

non-convex costs of adjustment; Ri,t is the rental cost of capital facing establishment i (the asso-

ciated period t capital Ki,t, like Li,t, is assumed to be a year-average value (also see Footnote 29));

µi,t and κi,t are Lagrange multipliers associated with the gross output production function con-

straint and gross-output-intermediate-input relation (where intermediate input is fully flexible),

respectively; β is the discount factor; and Et is the period t conditional expectations operator.

Marginal Cost. Denoting marginal cost by MCi,t, the envelope condition for the value function

from Equation (A.2) with respect to gross output in tandem with the first order condition of the

24Being exogenous to establishment i’s cost minimization problem, these input prices should appear as
additional arguments in the minimal cost value function. Nevertheless, for ease of exposition, I refrain from
including them as such.
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latter equation with respect to Mi,t imply that25

MCi,t ≡ ∂Vi,TC(Ai,t,Li,t−1,Ki,t−1
∂Zi,t

= µi,t + κi,t = µi,t +
Pi,t,M

ϑ . (A.3)

Note that I substitute out κi,t with Pi,t,M
ϑ as this substitution will facilitate my measurement of ψ

(where ψ − 1 is the inverse demand elasticity), which is the central issue of this section and to

which I turn in the next section. Also noteworthy is that a non-convex nature of C1(Li,t, Li,t−1)

and/or C2(Ki,t, Ki,t−1) would imply that µi,t > 0 when establishment i adjusts its (quasi-fixed)

labor and/or capital inputs while implying that µi,t = 0 when establishment i does not adjust

either of the labor and capital inputs.

A.1.2 Profit Maximization

Optimization Problem. Denote the maximal value of discounted revenues of establishment

i in period t by Vi,R(Ai,t, di,c(i),t), where di,c(i),t is the output demand shock from Equation (4).

Considering the demand structure environment from Section 3.1 (specifically, Equation (4)), this

maximal value is obtained from the solution to the following Bellman equation:

Vi,R(Ai,t, di,c(i),t) = max
Zi,t

[edi,c(i),t Zψ
i,t + βEtVi,R(Ai,t+1, di,c(i),t+1)]. (A.4)

And the maximal value of discounted profits for establishment i, denoted by Vi,Π(Ai,t, di,c(i),t, Li,t−1, Ki,t),

is given by

Vi,Π(Ai,t, di,c(i),t, Li,t−1, Ki,t−1) = Vi,R(Ai,t, di,c(i),t)−Vi,TC(Ai,t, Li,t−1, Ki,t−1). (A.5)

First Order Condition. The first order condition of Equation (A.5) with respect to Zi,t gives

ψ =
MCi,t
Pi,t,Z

=
µi,t

Pi,t,Z
+

Pi,t,M
ϑPi,t,Z

=
µi,t

Pi,t,Z
+

Pi,t,M Mi,t
Pi,t,ZZi,t

, (A.6)

where in moving from the second to third equality I substituted Equation (A.3) into Equation (A.6);

and in moving from the third to last equality I have substituted in the gross-output-intermediate-

input relation Zi,t = ϑMi,t.

25A remark is in order about the validity of these envelope and first order conditions given the non-
convex setting allowed for by the general labor and capital adjustment cost functions C1(Li,t, Li,t−1) and
C2(Ki,t, Ki,t−1) which presumably undermines this validity. A recent paper by Clausen and Strub (2020)
shows that such conditions are also valid even in the presence of a non-convex setting which suffers from
kinks (as the general model here).
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Restriction on ψ. Notably, since marginal cost is positive and does not exceed output price,

Equation (A.6) implies that 0 < ψ ≤ 1, i.e., that the elasticity of output demand 1
ψ−1 is larger than

one in absolute value. This restriction on the value of ψ, being imposed upon by establishments’

optimal behavior, is consistent with the empirical evidence from Foster et al. (2008) for modern

establishment-level data which finds industry-specific demand elasticities that are larger than one

in absolute value for nine of their ten considered industries.

A.1.3 Measurement of ψ

As I show in the next section, if ψ = 1 then my estimation procedure is consistent for the true

micro-level cleansing effect. In particular, the estimated micro-level cleansing effect is equal to

the ratio of the true cleansing effect and ψ. It is therefore possible, in principle, to eliminate the

upward bias from ψ by multiplying the dependent variable from Regression (12) (nominal output)

by ψ−1.

However, since I can only observe Pi,t,M Mi,t
Pi,t,ZZi,t

in the data and not the additional source of marginal

cost given by µ which comes from the adjustment of the less flexible labor input factor, I take

a conservative approach toward the measurement of ψ. In particular, I assign a lower bound

value for ψ given by the industry-specific cross-sectional average of Pi,t,M Mi,t
Pi,t,ZZi,t

in the data and, for

each industry, I multiply the nominal output variable from Regression (12) by the inverse of this

cross-sectional average.26 This value is a lower bound for ψ because the additional source of

marginal cost given by µ is necessarily positive and hence the multiplication of my empirical

nominal output variable by the inverse of this value overly corrects for the bias from ψ.

For completeness and comparison purposes, prior to showing the asymptotic behavior of my

bias-corrected estimation of the micro-level cleansing effect, I first show the asymptotic behavior

of the non-bias-corrected one. This is what I turn to next. (The non-bias-corrected estimation

procedure is also what underlies the estimation of the aggregate cleansing effect, where the latter’s

ability to produce a lower bound estimate for the true aggregate cleansing effect does not hinge

26As in Section 3, this section also continues to assume for the sake of exposition that there is a single
industry. Allowing for more than one industry would not change the asymptotic results obtained in this
section given that the OLS estimate of the cleansing effect would then merely be a weighted average of the
industry-specific OLS estimates. However, since this would complicate exposition without sacrificing the
validity of the this section’s results, I prefer to continue with the single-industry expositional setting.
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on the bias correction that is needed for the estimation of the micro-level cleansing effect. In fact,

this bias correction produces a larger estimated aggregate cleansing effect than that obtained from

using the non-bias-corrected estimation procedure.)

A.2 Identification of True Micro-Level Cleansing Effect: Non-Bias-
Corrected Estimation

A.2.1 True Specification for gi,t,t+h

As discussed in Decker et al. (2020), a generic dynamic labor demand model of the kind presented

in the previous section produces a rather generic representation for the growth rate of establish-

ment i’s employment from period t to t + h (denoted as in Section 4.2 by gi,t,t+h, with h = 2, 4, 6

representing the future horizon) given by27,28

gi,t,t+h = β1,hai,t + β2,hli,t + β3,hki,t + β4,hdi,c(i),t + εi,t+h, (A.7)

where ai,t, li,t, and ki,t
29 are logs of establishment i’s (physical) TFP, employment, and physical

capital, respectively, with corresponding coefficients β1, β2, and β3; di,c(i),t is the demand shock

from Equation (4) with corresponding coefficient β4,h, where c = 1, 2, ..., C (C < I) represents a

location comprising establishments whose demand shock is common owing to it being rooted in

27Granted, theoretical models of dynamic labor demand imply an employment growth policy function
that embodies a link between period t state variables and employment growth from period t to period t+ 1,
not t + h for h > 1 as in Equation (A.7). Nevertheless, this does not undermine the validity of Equation
(A.7), or the estimated empirical Specification (13) for that matter, because these equations can be viewed
as the outcome of recursively substituting out the t + s, t + s + 1 period pairs (with s = 0, 1, ..., 5) such that
employment growth from period t to period t + h is a function of period t state variables.

28It is noteworthy that the reduced form true specification from Equation (A.7) corresponds in general to
the theory-consistent one from Decker et al. (2020) only that I also include in mine initial physical capital.
This extension is due to the fact that my conceptual framework also includes physical capital as factor input
while theirs abstracted from this inclusion.

29Note that, while it is standard in theoretical settings to treat Ki,t as a predetermined state variable in
period t (representing capital at the end of period t − 1), such treatment is more natural in settings with
higher frequency data dimensions (e.g., quarterly). The reason for this is that in these settings the resultant
time dimension is sufficiently short for the initial capital stock to be solely considered as the capital relevant
for production. For the annual frequency underlying this paper’s theoretical and empirical analysis it is
more reasonable to treat Ki,t as a year-average value of physical capital so as to properly account for its
role in facilitating production throughout the year-long associated production period. While my period
t empirical measure of physical capital is measured for the end of period t, as requested by the COM
from surveyed establishments, this empirical measure can still be viewed as a reasonable proxy for its
year-average theoretical counterpart as it embodies the full year-long capital accumulation employed for
production throughout the period.
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horizontal differentiation (also see the discussion from Page 9); and εi,t+1 is an error term capturing

period t + h idiosyncratic shocks to input prices that are uncorrelated with ai,t, li,t, ki,t, and di,c(i),t.

The presence of ai,t and di,c(i),t in Equation (A.7), rather than ai,t+h and di,c(i),t+h, can be justified on

the basis of some assumed auto-regressive process underlying ai,t and di,c(i),t.

β1 is the true cleansing effect object this paper seeks to identify. For convenience, I assume that

gi,t,t+h, ai,t, li,t, ki,t, and di,c(i),t are all cast in terms of deviation from their corresponding industry

means. (Moreover, as in section 3, for ease of exposition and without loss of generality, I continue

to assume that there is a single industry comprising the I establishments.)

A.2.2 Estimated Specification for gi,t,t+h

Because my data does not allow me to observe at (also see the related discussion from Page 16), I

estimate the following two-equation system as a substitute specification with respect to Equation

(A.7):30

yi,t = ρ1Di,1,t + ρ2Di,2,t + · · ·+ ρCDi,C,t + γ1,hli,t + γ2,hki,t + ui,t, (A.8)

gi,t,t+h = δhûi,t + vi,t+h, (A.9)

where the first equation is meant to extract an estimate of ai,t, which is denoted by ûi,t, i.e., the

estimated residual from this equation; and the second equation simply regresses employment

growth on this estimated residual. County fixed effects ρc are now included to account for the

unobserved demand shock, where counties are indexed by c = 1, 2, ..., C (C < I) and Di,c,t is a

dummy variable equaling one if establishment i operates in county c.31 The important question

30As explained at the end of Section 4.2, while System (A.8)-(A.9) is asymptotically equivalent to a single
equation that regresses gi,t,t+h on all of the explanatory variables of Equation (A.8) as well as yi,t, the merit
of this system lies in its facilitation of appropriate inference for the bottom-up econometric approach which
estimates the aggregate cleansing effect. In particular, this two-equation system is able to explicitly account
for uncertainty in the estimation of the ai,t series which serves as an important input for the estimation of
the aggregate cleansing effect.

31To facilitate the asymptotic analysis of the suitability of my estimation procedure, I present the county
fixed effects explicitly in Equation (A.8) as opposed to implicitly as in the empirical specification from
Equation (12). It is also noteworthy that Equation (A.8) is different from the empirical specification from
Equation (12) only in that the industry fixed effects are now absent for ease of exposition; and, also for ease
of exposition, Equation (A.9) is different from the empirical specification from Equation (13) only in that the
multi-establishment fixed effects are now absent. Lastly, also note that estimated System (A.8)-(A.9) keeps
subscript t in line with true Specification (A.7) as opposed to System (12)-(13) which omits it given that for
the entire empirical analysis t = 1929.
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that emerges from System (A.8)-(A.9) is what the asymptotic behavior of the estimate of δh is with

respect to its counterpart β1,h.

A.2.3 What the Estimated δh Captures

Taking logs of Equation (A.1) (Equation (6) in the text) gives yi,t = di,c(i),t +ψai,t +(αL +ψ− 1)li,t +

(αK + ψ− 1)ki,t. This structural representation of logged nominal output yi,t will assist us below

in the asymptotic examination of δh’s estimate.

First Stage of Estimation Procedure. The first stage of my estimation procedure consists of es-

timation of Equation (A.8). Let DI,C,t = [D1,1,t, ..., DI,1,t; D1,2,t, ..., DI,2,t; ...; D1,C,t, ..., DI,C,t]
′ be the

stacked county fixed effect dummy matrix; and let XI,t = [l1,t, ..., lI,t; k1,t, ..., k I,t; D1,C,t, ..., DI,C,t]
′

and yI,t = [y1,t...yI,t]
′ be the stacked data matrices that underlie Regression (A.8). With this no-

tation in place, the expression for the estimated residual from the latter regression, denoted by

ûI,t = [û1,t...ûI,t]
′, can be written as

ûI,t = lpI,t − XI,t(X′I,tXI,t)−1X′I,tlpI,t = dI,t + ψaI,t + (αL + ψ− 1)lI,t+ (A.10)

(αK + ψ− 1)kI,t − XI,t(X′I,tXI,t)−1X′I,t(dI,t + ψaI,t + (αL + ψ− 1)lI,t + (αK + ψ− 1)kI,t) =

ψaI,t − ψXI,t(X′I,tXI,t)−1X′I,taI,t.

where aI,t = [a1,t, ..., aI,t]
′, lI,t = [l1,t, ..., lI,t]

′, kI,t = [k1,t, ..., k I,t]
′, and dI,t = [d1,c(1),t, ..., dI,c(I),t]

′;

and in going from the first to third equality in Equation (A.10) I have substituted the relation

yI,t = dI,t + ψaI,t + (αL + ψ− 1)lI,t + (αK + ψ− 1)kI,t into that equation, while making use of the

fact that, since XI,t consists of the data vectors lI,t, kI,t, and DI,t, terms relating to the latter data

vectors can be perfectly predicted by XI,t and thus get canceled out.

Importantly, this cancellation also applies to the prediction error for dI,t, i.e., dI,t −

XI,t(X′I,tXI,t)−1X′I,tdI,t = 0. To see why the latter equality is true, recall that d$,c($),t = dς,c(ς),t for

all $, ς ∈ c (i.e., c($) = c(ς)). Hence, simply assigning ρc = di,c(i),t for all i’s corresponding to c

produces di,c(i),t = ρ1Di,1,t + ρ2Di,2,t + · · ·+ ρCDi,C,t, i.e., dI,t is a linear combination of the vectors

comprising DI,t. The identifying assumption underlying this result is that the average county c is

sufficiently small so that DI,C,t’s column dimension is sufficiently large for completely capturing
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horizontal-differentiation-induced demand differences. To the extent that this is not the case,

there will be a bias from the presence of the demand shock. However, the county fixed effects

I use are arguably fine enough to capture well such demand differences, encompassing a total

of 1,992 counties with the average industry containing on average 0.44 establishments in each

county.

Equation (A.10) formally shows that the residual from regressing nominal output on employ-

ment, capital, and the county fixed effect dummy matrix would only identify TFP if ψ = 1

and plim
I→∞

XI,t(X′I,tXI,t)−1X′I,taI,t 6= 0. The first condition implies perfectly elastic demand for

establishment-level output, which is at odds with evidence from modern establishment-level data

(Foster et al. (2008)). And the invalidity of the second condition precisely speaks to the endogene-

ity issue facing production function OLS estimation: since standard models generically indicate

that there should clearly be a cross-sectional dependence of employment and capital on TFP, i.e.,

plim
I→∞

XI,t(X′I,tXI,t)−1X′I,taI,t 6= 0, such estimation fails at recovering TFP.

Although the cross-sectional TFP series itself is clearly not identified in this setting, under-

standing what its estimated effect on future employment growth captures is still very much worth-

while. Toward this end, I now turn to the second stage of my estimation procedure.

Second Stage of Estimation Procedure. The second stage of my estimation procedure consists

of estimation of Equation (A.9), i.e., regressing gI,t,t+h = [g1,t,t+h, ..., gI,t,t+h]
′ on ûI,t. It is useful

to denote forecasted logged TFP (in deviation from industry mean) XI,t(X′I,tXI,t)−1X′I,taI,t by âI,t

and to note that aI,t = ψ−1ûI,t + âI,t. This in turn yields the following expression and associated

asymptotic result for the estimate of δh (δ̂h):

plim
I→∞

δ̂h = plim
I→∞

(û′I,tûI,t)−1û′I,tgI,t,t+h = plim
I→∞

(û′I,tûI,t)−1û′I,t(β1,haI,t + β2,hlI,t+ (A.11)

β3,hkI,t + β4,hdI,t + εI,t+h) = plim
I→∞

(û′I,tûI,t)−1û′I,t

(
β1,h
ψ ûI,t + β1,h âI,t

)
=

β1,h
ψ > β1,h.

Note that in going from the first to last equality from Equation (A.11) I have made use of the

fact that, being the estimated residual from Equation (A.8), ûI,t is uncorrelated with all variables

belonging to XI,t as well as âI,t as the latter forecast is conditioned on XI,t. Moreover, I have also

made use of the assumption that εI,t+1 (εI,t+1 = [ε1,t+1...εI,t+1]
′) is an error term that is uncorrelated
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with establishment-level employment, capital, county fixed effect dummy matrix, and TFP.

The main takeaway from Equation (A.11) is that δ̂h is only consistent for β1,h if ψ = 1. This

inconsistency clearly reflects upward biasedness, which would be discouraging if I were to use

my raw estimation procedure to obtain the micro-level cleansing effect estimate. However, as

explained in the beginning of Section A.1, this inconsistency result actually opens the door for

applying a bias-correction procedure to the raw estimation procedure which yields a lower bound

estimate for β1,h. This conservative bias correction based estimation approach is what I turn to

discuss next.

A.3 Identification of True Micro-Level Cleansing Effect: Bias-
Corrected Estimation

On the basis of Equation (A.6), this section puts forward a bias-corrected estimation approach

that assigns a lower bound value for ψ (denoted by ψ̃ < ψ) given by the industry-specific cross-

sectional average of Pi,t,M Mi,t
Pi,t,ZZi,t

in the data where for each industry I multiply yi,t from Equation (A.8)

by the inverse of this cross-sectional average. In particular, I construct a bias-corrected nominal

output variable ỹi,t = ψ̃−1yi,t and enter it into estimated Regression (A.8) in place of yi,t.32

A.3.1 True Specification for gi,t,t+h

The true specification is the same as that from Section A.2.1 (i.e., Equation (A.7)).

A.3.2 Estimated Specification for gi,t,t+h

As explained in the beginning of this section, the estimated specification for the bias-corrected

procedure replaces yi,t with ỹi,t = ψ̃−1yi,t, resulting in the following modified estimated two-

32Recall that for expositional purposes I assume there is only one industry comprising the I establish-
ments while in the actual empirical analysis I apply this data correction for each of the 20 industries. How-
ever, as also explained in Footnote 26, having more than one industry has no bearing on the asymptotic
results of this section as the resulting micro-level cleansing effect OLS estimate would simply be a weighted
average of the industry-specific estimates. Hence, the single-industry assumption is made merely to ease
exposition and without loss of generality.
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equation specification:

ỹi,t = ρbc,1Di,1,t + ρbc,2Di,2,t + · · ·+ ρbc,CDi,C,t + γ1,bc,hli,t + γ2,bc,hki,t + ubc
i,t, (A.12)

gi,t,t+h = δbc,hûbc
i,t + vbc

i,t+h, (A.13)

where I have added subscript and superscript bc to the coefficients and residuals in these regres-

sions, respectively, to clarify that these regressions underly the bias-corrected estimation proce-

dure.

A.3.3 What the Bias-Corrected Estimated δbc,h Captures

First Stage of Estimation Procedure. The only difference in this part’s analysis relative to the

corresponding one from Section A.2.3 is that ỹi,t replaces yi,t. Hence, keeping with the same ter-

minology from that section’s analysis, the expression for the estimated residual from Equation

(A.12), denoted by ûbc
I,t = [ûbc

1,t...û
bc
I,t]
′, can be written as

ûbc
I,t = ỹI,t − XI,t(X′I,tXI,t)−1X′I,tlpI,t = ψ̃−1(dI,t + ψaI,t + (αL + ψ− 1)lI,t+ (A.14)

(αK + ψ− 1)kI,t)− ψ̃−1XI,t(X′I,tXI,t)−1X′I,t(dI,t + ξI,t + ψaI,t + (αL + ψ− 1)lI,t + (αK + ψ− 1)kI,t) =

ψ̃−1ψaI,t − ψ̃−1ψXI,t(X′I,tXI,t)−1X′I,taI,t.

Second Stage of Estimation Procedure. It is useful to recall the previous section’s denotation

of forecasted logged TFP XI,t(X′I,tXI,t)−1X′I,taI,t by âI,t and to note that abc
I,t = ψ̃ψ−1ûI,t + âI,t. This

in turn yields the following expression and associated asymptotic result for the estimate of δbc,h

(δ̂bc,h):

plim
I→∞

δ̂bc,h = plim
I→∞

(ûbc
I,t
′ûbc

I,t)
−1ûbc

I,t
′gI,t,t+h = plim

I→∞
(ûbc

I,t
′ûbc

I,t)
−1ûbc

I,t
′(β1,haI,t + β2,hlI,t+ (A.15)

β3,hkI,t + β4,hdI,t + εI,t+h) = plim
I→∞

(ûbc
I,t
′ûbc

I,t)
−1ûbc

I,t
′
(

ψ̃
β1,h
ψ ûI,t + β1,h âI,t

)
= ψ̃

β1,h
ψ < β1,h.

Equation (A.15) formally shows that the bias-corrected OLS estimate of the micro-level cleansing

effect converges in probability to a value that is lower than the true cleansing effect β1,h (owing to

the fact that ψ̃ < ψ). Note that if I were able to observe the ratio of the labor- and capital-input-

induced marginal cost to output price (i.e., µi,t
Pi,t

) then I would be able to obtain a precise measure
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of ψ by adding to the original ψ measure (ψ̃) the cross-sectional average of µi,t
Pi,t

, in which case the

bias-corrected estimate would be consistent for the true micro-level cleansing effect. But since the

unobserved cross-sectional average of µi,t
Pi,t

is positive, we know that ψ̃
ψ < 1 and hence the micro-

level cleansing effect estimate from Equation (A.15) underestimates its true counterpart object.

In sum, my bias-corrected estimation approach provides a conservative, lower bound estimate

for the true micro-level cleansing effect. As such, it is able to deliver results on the micro-level

cleansing effect that are meaningfully informative about the true micro-level cleansing effect.

A.4 Identification of True Aggregate Cleansing Effect

While the raw estimate of the micro-level cleansing effect is upward biased with respect to its true

counterpart, using this raw estimate along with the raw estimated TFP series results in an estimate

of the aggregate cleansing effect that understates its true counterpart. Hence, for the estimated ag-

gregate cleansing effect, my focus shifts to the raw estimated micro-level cleansing effect. (In fact,

using the bias-corrected micro-level cleansing effect and TFP series estimates actually produces a

higher estimated aggregate cleansing effect than that obtained from using the raw estimates.) This

section shows this underestimation of the true aggregate cleansing effect.

A.4.1 True Aggregate Cleansing Effect

Definition of True Aggregate Cleansing Effect. Recall this paper’s definition of the true aggre-

gate cleansing effect, denoted by C, as given by Equation (9) in the text:

Ct,t+h =
I

∑
i=1

Et
(
wi,t+h

∣∣ ai,t
)

ai,t −
I

∑
i=1

wi,tai,t, (A.16)

where t = 1929 and h = 2, 4, 6; and Et
(
wi,t+h

∣∣ ai,t
)

represents establishment i’s expected employ-

ment share at horizon t + h conditional on initial logged TFP (in deviation from industry mean).

Expression for Et
(
wi,t+h

∣∣ ai,t
)
. To obtain an explicit expression for Et

(
wi,t+h

∣∣ ai,t
)
, we need to

combine Et
(

gi,t,t+h
∣∣ ai,t

)
= β1,hai,t with the relation between future employment share and growth

wi,t+h =
Li,t(1+gi,t,t+h)

∑I
i=1 Li,t(1+gi,t,t+h)

. (Optimal prediction Et
(

gi,t,t+h
∣∣ ai,t

)
= β1,hai,t is obtained from applying

the latter conditional expectations operator to the true specification from Equation (A.7).) Since
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wi,t+h is a nonlinear function of gi,t,t+h, it is apriori unclear that

Et
(
wi,t+h

∣∣ ai,t
)
=

Li,t

(
1 + Et

(
gi,t,t+h

∣∣ ai,t
) )

I
∑

i=1
Li,t

(
1 + Et

(
gi,t,t+h

∣∣ ai,t
) ) =

Li,t(1 + β1,hai,t)
I

∑
i=1

Li,t(1 + β1,hai,t)

(A.17)

constitutes a sufficiently precise approximation of the true conditional expectation of the future

employment share. However, in derivations that are not shown here but are available upon

request, I have applied a second-order Taylor approximation of the first moment of wi,t+h =

Li,t(1+gi,t,t+h)

∑I
i=1 Li,t(1+gi,t,t+h)

and found that

Et
(
wi,t+h

∣∣ ai,t
)
=

Li,t

(
1 + Et

(
gi,t,t+h

∣∣ ai,t
) )

I
∑

i=1
Li,t

(
1 + Et

(
gi,t,t+h

∣∣ ai,t
) ) + O(I−4), (A.18)

i.e., the approximation error from Equation (A.17) becomes very negligible as sample size becomes

asymptotic with this error shrinking to zero at the same rate as lim
I→∞

I−4. While the analysis of the

aggregate cleansing effect does not rely on asymptotics but rather takes as given my empirical

sample (and its size), as opposed to the micro-level cleansing effect analysis, the baseline sam-

ple size of 17,767 observations is still sufficiently large for rendering the O(I−4) error term from

Equation (A.18) ignorable for my purposes. Hence, in what follows, I will use Equation (A.17) to

represent the conditional expectation of the future employment share.

Explicit Expression for True Aggregate Cleansing Effect. We are now in position to write the

explicit expression for the true aggregate cleansing effect:

Ct,t+h =
I

∑
i=1


Li,t(1 + β1,hai,t)

I
∑

i=1
Li,t(1 + β1,hai,t)

ai,t

−
I

∑
i=1

wi,tai,t = (A.19)

I
∑

i=1
ai,tLi,t +

I
∑

i=1
β1,ha2

i,tLi,t

I
∑

i=1
Li,t +

I
∑

i=1
β1,hai,tLi,t

−
I

∑
i=1

wi,tai,t =

I
∑

i=1
ai,tLi,t +

I
∑

i=1
β1,ha2

i,tLi,t

I
∑

i=1
Li,t +

I
∑

i=1
β1,hai,tLi,t

−

I
∑

i=1
ai,tLi,t

I
∑

i=1
Li,t

.
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A.4.2 Estimated Aggregate Cleansing Effect

Explicit Expression for Estimated Aggregate Cleansing Effect. As explained in Section 4.3, my

estimate of the aggregate cleansing effect, which I denote by Ĉt,t+h, is given by

Ĉt,t+h =
I

∑
i=1


Li,t(1 + δ̂hûi,t)

I
∑

i=1
Li,t(1 + δ̂hûi,t)

ûi,t

−
I

∑
i=1

wi,tûi,t = (A.20)

I
∑

i=1
ûi,tLi,t +

I
∑

i=1
δ̂hû2

i,tLi,t

I
∑

i=1
Li,t +

I
∑

i=1
δ̂hûi,tLi,t

−
I

∑
i=1

wi,tai,t =

I
∑

i=1
ûi,tLi,t +

I
∑

i=1
δ̂hû2

i,tLi,t

I
∑

i=1
Li,t +

I
∑

i=1
δ̂hûi,tLi,t

−

I
∑

i=1
ûi,tLi,t

I
∑

i=1
Li,t

,

where ûi,t is the i’th row of ûI,t = ψaI,t − ψXI,t(X′I,tXI,t)−1X′I,taI,t.

A.4.3 Underestimation of True Aggregate Cleansing Effect

It is in general not possible to obtain analytical results regarding the asymptotic size of Ĉt,t+h rela-

tive to its true counterpart Ct,t+h. However, it is possible to show through appropriate simulations

that, conditional on my observed sample and related coefficient estimates, there is a meaningful

underestimation of the true aggregate cleansing effect, i.e., Ct,t+h ≥ Ĉt,t+h. This what I turn to

show in the remainder of this section.

Substituting Out δ̂h and ûi,t From Equation (A.20). Considering that my sample size is suffi-

ciently large for the asymptotic relations δ̂h =
β1,h
ψ and ûi,t = ψãi,t to hold with sufficient precision

for my observed sample and associated estimates, we can use these relations to substitute out δ̂h

and ûi,t from Equation (A.20) and obtain the following expression for Ĉt,t+h:

Ĉt,t+h =

I
∑

i=1
ψãi,tLi,t +

I
∑

i=1
β1,hψã2

i,tLi,t

I
∑

i=1
Li,t +

I
∑

i=1
β1,h ãi,tLi,t

−

I
∑

i=1
ψãi,tLi,t

I
∑

i=1
Li,t

. (A.21)

Simulation Experiment. To asses the size of Ct,t+h relative to that of Ĉt,t+h (i.e., the magnitude

of underestimation), I form a grid of ψ that ranges between 0.5 and 1 with spacing of 0.01 and use
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my empirical estimates of δ̂h and ûi,t to compute the values of β1,h and ãi,t for each value of ψ’s

grid.33 This allows me to compute Ĉt,t+h from Equation (A.21) for each value in this grid.

To correspondingly compute Ct,t+h from Equation (A.19) for each value of ψ’s grid, I need

values for ai,t. Toward this end, I randomly generate ai,t for each value of ψ’s grid as follows. Let

ri,t be a uniformly distributed random (white noise) variable with lower and upper bounds of zero

and sãi,t, respectively, where s is a scale parameter whose role will be discussed below. Then, if

ãi,t > 0, I generate ai,t as the sum of ãi,t and ri,t; and if ãi,t < 0, I generate ai,t as the difference

between ãi,t and ri,t. This way of simulating ai,t implies that, for all i, when s > 0 then ãi,t < ai,t;

when s = 0 then ãi,t = ai,t; and when s < 0 then ãi,t < ai,t.

Recall that ãi,t is the residual obtained from regressing ai,t on labor and capital inputs. Hence,

the case of s < 0 corresponds to a downward bias in the OLS coefficients on the latter inputs; the

case of s = 0 corresponds to no bias in them; and the case of s > 0 corresponds to an upward

bias in them. While the upward bias case is in general both theory- and data-consistent,34 I wish

to purse an agnostic approach and establish that my estimation approach underestimates the true

aggregate cleansing effects for all of these three bias direction cases.

To ensure that my results are not driven by any one particular randomly drawn series of ri,t,

I repeat the simulation described above 1000 times collecting for each simulation the difference

(in percentage terms) between the true and estimated aggregate cleansing effects (i.e., Ct,t+h−Ĉt,t+h

Ĉt,t+h
)

for each value of ψ’s grid, and compute the median, maximal, and minimal values for this object

across the 1000 replications.35 I do this for s = −0.5, s = 0, and s = 0.5, i.e., for the case of ai,t

being smaller than ãi,t on average by 25%; for the case of ãi,t = ai,t; and for the case of ai,t being

greater than ãi,t on average by 25%.

33For simplicity, I assume a common ψ for all industries in my sample. The message of my simulation
experiment is qualitatively unchanged, and in fact is materially amplified in quantitative terms, when ψ
is allowed to take on smaller values than 0.5. However, as noted by Decker et al. (2020), a standard value
for ψ from the literature (which they also use in the calibration of their model) is 0.67. Hence, I allow for a
reasonable range of values for ψ around this standard value.

34This statement is made on the basis of the fact that such upward bias is rooted in there being positive
cross-sectional correlation between TFP and labor and capital inputs, and this positive correlation is borne
out by the literature’s robust evidence on a positive covariance between productivity and size (see, e.g.,
Bartelsman et al. (2013)).

35Note that Ĉt,t+h does not change across replications, being always equal to the estimated aggregate
cleansing effect.
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Simulation Results. Figure A.1 shows Ct,t+h−Ĉt,t+h

Ĉt,t+h
for each value of ψ’s grid. This figure contains

a total of nine sub-figures, with each column corresponding to a different h (h = 2, 4, 6 corre-

sponding to 1931, 1933, and 1935 related estimates) and each row corresponding to a different s

(s = −0.5, 0, 0.5). (These results pertain to the continuers and exiters sample. Similar results ob-

tain for the only continuers sample.) Solid lines depict the median underestimation magnitude

across replications while the lower and upper dashed lines represent the minimal and maximal

underestimation magnitudes across replications.

The results from Figure A.1 clearly indicate the robust nature of my estimation approach’s un-

derestimation of the true aggregate cleansing effect, with the true aggregate cleansing effect never

being meaningfully below its estimated counterpart while being considerably above it for effec-

tively all ψ values. The one exception is extreme ψ values approaching ψ = 1 (i.e., establishments

facing perfectly elastic output demand) for the s > 0 case and only 1931. But even for this very par-

ticular setting the median true aggregate cleansing effect is only modestly lower than its estimated

counterpart, with the gap beginning to be negative from ψ = 0.94 onward and troughing at -6.6%

for ψ = 1. It is noteworthy that for the s = 0 case there is no bias in the estimation when ψ = 1.

In general, s = 0 induces determinism in the simulation experiment thus resulting in identical

median, maximal, and minimal underestimation biases, since it implies that Ct,t+h−Ĉt,t+h

Ĉt,t+h
= ψ−1− 1

(which becomes zero when ψ = 1).

Taking the standard value of ψ = 0.67 as a benchmark (Decker et al. (2020)), we can see that

the magnitude of underestimation is in the order of 39%-76% across years and s values (i.e., the

median true aggregate cleansing effect is 39%-76% higher than its estimated counterpart). And the

minimal values of this underestimation across replications (i.e., the lower (dashed) bands in the

sub-figures corresponding to ψ = 0.67) are never below 29.5%. The more realistic case of s > 0 pro-

duces a severe underestimation of 39.1%, 60.7%, and 53.9% for 1931, 1933, and 1935, respectively.

(The less realistic cases of s < 0 and s = 0 produce even moderately greater underestimation.)

In sum, the main takeaway from this section is that my estimated aggregate cleansing effect

materially underestimates its true counterpart. I have obtained this underestimation result in an

agnostic manner, solely relying on my observed sample of initial (1929) employment levels along

with the estimated micro-level cleansing effect and associated residual from Regression (13). We
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can therefore be fairly confident in the validity of this paper’s message about the Great Depression

period being a period of great cleansing.

Figure A.1: Underestimation of True Aggregate Cleansing Effect.
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Notes: This figure presents the results from the simulation experiment described in Ap-
pendix A.4.3. The figure shows Ct,t+h−Ĉt,t+h

Ĉt,t+h
for each value of ψ’s grid. Solid, lower dashed,

and upper dashed lines depict the median, minimal, and maximal underestimation mag-
nitudes across replications. Each column of the figure corresponds to a different h
(h = 2, 4, 6 corresponding to 1931, 1933, and 1935 related estimates) and each row cor-
responds to a different scale parameter s (s = −0.5, 0, 0.5). s = −0.5 (s = 0.5) corresponds
to ai,t being smaller (greater) than ãi,t on average by 25% whereas s = 0 corresponds to
ai,t = ãi,t. The results pertain to the continuers and exiters sample. The x-axis shows a
grid of ψ (where 1

ψ−1 is the price elasticity of output demand (see Equation (4) from the
text)) from 0.5 to 1 with a spacing of 0.01. Y-axis shows the magnitude of underestimation
in percentage terms (i.e., 100

Ct,t+h−Ĉt,t+h
Ĉt,t+h

).
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Appendix B Posterior Distribution of Parameters for
Micro-Level and Bottom-Up Estimations

Since the Bayesian estimation of Equations (12) and (13) is done sequentially, estimating the lat-

ter conditional on that of the former, I present here the estimation for each equation separately

while taking as given the estimated posterior draw of the residual series from Equation (12) when

estimating Equation (13).

Estimation of Equation (12). Drawing on the notation from Page 19, let the set of the param-

eters (coefficients matrix and residual standard deviation) to be estimated from Equation (12) be

given by A and σ1. Equation (12) can then be written in companion form as follows:

Y1 = X1A + ζ1, (B.1)

where Y1 = [y0, y1, ..., yI ]
′; X1 = [D0,ind, ..., DI,ind; D0,county, ..., DI,county; l0, ..., lI ; k0, ..., k I ]

′, with Di,ind

and Di,mp being the industry and county fixed effects, respectively; A = [γind,h, γcounty,h, γ1, γ2]′;

and ζ1 = [u0, u1, ..., uI ]
′. A here represents the coefficient matrix of Equation (12) and σ2

1 is the

variance of ui,h. i indexes establishments, with i = 1, ..., I = 17, 767 (I = 17, 767 is the number of

establishments in the sample).

I assume the following normal-inverse Wishart prior distribution for these parameters:

vec(A) | σ2
1 ∼ N(vec(Ā0), σ2

1 × N−1
0 ), (B.2)

σ2
1 ∼ IW(v0S0, v0), (B.3)

where Ā0 is an arbitrary matrix with the same size as A; N0 is a positive definite matrix; S0 is a

variance scalar; and vo > 0. It is well known that the latter prior implies the following posterior

distribution:

vec(A) | σ2
1 ∼ N(vec(Ā), σ2

1 × N−1), (B.4)

σ2
h ∼ IW(vS, v), (B.5)

where v = I + v0; N = N0 + X′1X1; Ā = N−1(N0Ā0 + X′1X1Â); S = v0
v S0 +

I
v σ̂2

1 + 1
v (Â −

Ā0)′N0N−1X′1X1(Â− Ā0), where Â = (X′1X1)
−1 (X1)

′ Y1 and σ̂2
1 = (Y1 − X1Â)′(Y1 − X1Â)/I.
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I use a weak prior, i.e., v0 = 0, N0 = 0, and arbitrary S0 and Ā0. This implies that the prior

distribution is proportional to σ2
1 and that v = I, S = σ̂2

1 , Ā = Â, and N = X′1X1. Due to the

within-industry correlation of the error term ui, the likelihood function is misspecified which in

turn requires that the residual variance estimate σ̂2
1 be appropriately modified so as to improve

estimation precision (Müller (2013)). Toward this end, I apply a correction to σ̂2
1 which clusters the

standard errors at the industry level and denote the corrected variance estimate by σ̂2
1,clus.

We are now in position to lay out the posterior simulator for A and σ2
1 , which can be described

as follows:

1. Draw σ2
1 from an IW(Iσ̂2

1,clus, I) distribution.

2. Draw A from the conditional distribution MN(Â, σ2
1 × (X′1X1)

−1).

3. Repeat Steps 1-3 a large number of times and collect the drawn A’s and σ2
1 ’s.

Once I have these draws at hand, I compute the residual from Equation (12) (i.e., ûi) and feed

it into the estimation of Equation (13),36 as described next.

Estimation of Equation (13). Continuing to draw on the notation from Page 19, let the set of

the parameters (coefficients matrix and residual standard deviation) to be estimated from Equa-

tion (13) be given by Bh and σ2,h. Equation (13) can then be written in companion form as follows:

Y2,h = X2Bh + ζ2,h (B.6)

h is the regression’s horizon with h = 2, 4, 6 corresponding to years 1931, 1933, and 1935; Y2,h =

[g0,h, g1,h, ..., gI,h]
′; X2 = [D0,mp, ..., DI,mp; û0, ..., ûI ]

′, where Di,mp are the multi-establishment firm

fixed effects; Bh = [γme,h, δh]
′; and ζ2,h = [v0,h, v1,h, ..., vI,h]

′. Bh here represents the coefficient matrix

of Equation (13) and σ2
2,h is the variance of vi,h.

I assume the following normal-inverse Wishart prior distribution for these parameters:

vec(Bh) | σ2
2,h ∼ N(vec(B̄0,h), σ2

2,h × N−1
0 ), (B.7)

σ2
2,h ∼ IW(v0S0,h, v0), (B.8)

36When I report the results on the micro-level cleansing effect, I refer to a unit standard deviation effect
by dividing each posterior draw of the coefficient δ̂h by ûi’s standard deviation

√
σ1.
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where B̄0
h is an arbitrary matrix with the same size as Bh; N0 is a positive definite matrix; S0 is a

variance scalar; and vo > 0. The latter prior implies the following posterior distribution:

vec(Bh) | σ2
2,h ∼ N(vec(B̄h), σ2

2,h × N−1), (B.9)

σ2
2,h ∼ IWk(vhSh, vh), (B.10)

where vh = I + v0; N = N0 + X′2X2; B̄h = N−1(N0B̄0
h + X′2X2B̂h); Sh = v0

v S0,h +
I

vh
σ̂2

2,h +
1
vh
(B̂h −

B̄0,h)
′N0N−1X′2X2(B̂h − B̄0,h), where B̂h = (X′2X2)−1 (X2)

′ Y2,h and σ̂2
2,h = (Y2,h − X2B̂h)

′(Y2,h −

X2B̂h)/I.

I use a weak prior, i.e., v0 = 0, N0 = 0, and arbitrary S0,h and B̄0,h. This implies that the prior

distribution is proportional to σ2
2,h and that vh = I, Sh = σ̂2

2,h, B̄h = B̂h, and N = X′2X2. Due to the

within-industry correlation of the error term vi,h, the likelihood function is misspecified which in

turn requires that the residual variance estimate σ̂2
2,h be appropriately modified so as to improve

estimation precision (Müller (2013)). Toward this end, as in the estimation of Equation (12), I

apply a correction to σ̂2
2,h which clusters the standard errors at the industry level and denote the

corrected variance estimate by σ̂2
2,h,clus.

We are now in position to lay out the posterior simulator for Bh and σ2
2,h, which can be de-

scribed as follows:

1. Draw σ2
2,h from an IW(Iσ̂2

2,h,clus, I) distribution.

2. Draw Bh from the conditional distribution MN(B̂h, σ2
2,h × (X′2X2)−1).

3. Repeat Steps 1-3 a large number of times and collect the drawn Bh’s and σ2
2,h’s.

Estimation of Cleansing-Induced Aggregate TFP Change. The posterior draws of ûi and

δ̂h can be used to construct the posterior distribution of Ch from the aggregate cleansing effect

formula from Equation (14). In particular, I compute ĝi,h = δ̂hûi and then use this predicted value

to generate the predicted employment share in period 1929 + h, i.e., ŵi,h =
Li(1+ĝi,h)

∑I
i=1 Li(1+ĝi,h)

where

ŵi,h is establishment i’s predicted employment share for year 1929 + h and Li is establishment

i’s employment in 1929. I then use these predicted employment share weights to compute the

posterior draw of Ĉh from the aggregate cleansing effect formula from Equation (14).
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Accordingly, the posterior simulator for Ch can be described as follows:

1. Do Steps 1 and 2 from the posterior simulator of Equation (12) and obtain a posterior draw

of ûi.

2. Using the latter ûi value, do Steps 1 and 2 from the posterior simulator of Equation (13) and

obtain a posterior draw of δ̂h.

3. Compute predicted employment growth as ĝi,h = δ̂hûi.

4. Compute predicted employment share in period 1929 + h as ŵi,h =
Li(1+ĝi,h)

∑I
i=1 Li(1+ĝi,h)

.

5. Insert ŵi,h into Equation (14) and obtain Ĉh.

6. Repeat Steps 1-5 a large number of times and collect the drawn Ch.

Appendix C Robustness Checks

This appendix examines the robustness of the baseline results for δ̂h and Ĉh along three dimen-

sions. The first considers an alternative formulation of the production structure from Section 3.1

which removes the Leontief production structure assumption and allows the intermediate input

factor to be substitutable for the other input factors. The second deals with the issue of cross-

sectional variation in input utilization. And the third concerns the application of the two-way

standard error clustering approach from Cameron et al. (2011) to my setting, extending my base-

line one-way clustering at the industry level to also allow for error dependence within states (in

addition to within industries).

C.1 Alternative Production Structure

The underlying framework of the baseline empirical analysis assumes a Leontief production struc-

ture where physical intermediate inputs Mi,t have no substitutability and are linearly related to

physical output Zi,t. An alternative production structure that allows for such substitutability can

be represented by the following production function (which replaces that from Equation (2)):

Zi,t = Ai,tL
αL
i,t KαK

i,t MαM
i,t , (C.1)
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where now physical intermediate input enters the production function with intermediate input

share αM. This alternative representation for physical output requires the addition of a measure

of physical intermediate inputs as explanatory variable in Regression (12). To account for physical

intermediate input under the alternative production structure from Equation (C.1), I make use

of available data from the COM on electricity usage in kilowatt hour (kWh) units (from both

purchased and generated electricity).37 This variable was only collected in the 1929 COM, which

is suitable for my purposes given that 1929 is my year of interest for estimating initial TFP. And it

is available for 17,097 establishments, a moderately smaller sample size than the baseline sample

size.

The results from adding logged electricity usage to Regression (12) as an explanatory variable

appear in Figure C.1. It is clear that accounting for the alternative production structure from

Equation (C.1) has no meaningful quantitative bearing on the results. The results from Figure

C.1 are similar to those from Figure 2 and lend further support to the notion that considerable

cleansing took place in the Great Depression period at hand.

C.2 Cross-Sectional Variation in Input Utilization

My baseline Regression (12) as well as its underlying production structure implicitly assumes

away cross-sectional variation in unobserved input utilization. This raises the concern that the

residual estimated from Regression (12) picks up cross-sectional variation in the extent to which

labor and capital inputs are utilized. Unfortunately, given the essentially null time dimension of

my data, it is beyond the scope of this paper to account for varying utilization of factor inputs in

the estimation of Regression (12) along the lines of the time series instrumental variable approach

from Basu et al. (2006) (also see related discussion on Page 16).

Nevertheless, the COM asked respondents in 1929 to report the number of weekly hours for

37While nominal values for intermediate inputs (cost of raw materials, fuels, and purchased electric en-
ergy) are available from the COM, using them to proxy for physical intermediate input would induce a bias
because of likely heterogeneity in the prices of these inputs. See Atalay (2014) for evidence from modern
U.S. establishment-level manufacturing data on substantial within-industry variation in materials input
prices facing establishments. And see Ornaghi (2006) and Grieco et al. (2016) for evidence on the sub-
stantial bias that results from estimating production functions without accounting for materials input price
heterogeneity.
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which their establishment operated. While this is an imperfect proxy for unobserved input utiliza-

tion, I still view the inclusion of this variable in Regression (12) as informative for the robustness

of the results to cross-sectional variation in input utilization. Figure C.2 presents the results from

adding the log of my input utilization proxy as an additional explanatory variable in Regression

(12). (This variable is available for 17,745 establishments, only slightly less than the 17,767 baseline

sample.) The results from Figure C.2 allay the concern that cross-sectional variation in unobserved

input utilization is driving this paper’s results as the addition of my utilization measure to Regres-

sion (12) produces similar results to the baseline ones.

C.3 Two-Way Clustered Standard Errors

In my baseline estimation, as explained in Appendix B, I apply a correction to standard errors

which clusters them at the industry level (this is done in both stages of the estimation). One may

argue that a more suitable clustering approach is ones that takes into account possible dependence

of errors within counties in addition to within industries. Toward this end, I repeat my baseline

estimate procedure and replace my one-way clustering approach with the two-way clustering

approach from Cameron et al. (2011) which clusters at both the industry and the state level. (It is

noteworthy that the resulting standard error from such two-way clustering need not necessarily

be greater than the one-way clustered standard error since the former is equal to square root of the

sum of the variances clustered by each group minus the variance from the intersected clusters.)

The results from this estimation exercise appear in Figure C.3. It is evident that the statistical

significance of the baseline estimates is not affected by the use of the alternative two-way cluster-

ing approach. The posterior bands from Figure C.3 are comparable in size to those from baseline

Figure 2, continuing to support this paper’s main message about a substantial aggregate cleansing

effect taking place in the Great Depression period at hand.
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Figure C.1: Alternative Production Structure: Cleansing-Induced Effect.
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Notes: This figure’s exposition is identical to that of baseline Figure 2, only that now
logged electricity usage (in Kwh units) is added to Regression (12) to account for the
alterative production structure from Equation (C.1) (which replaces that from Equation
(2)).
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Figure C.2: Accounting for Input Utilization: Cleansing-Induced Effect.
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Notes: This figure’s exposition is identical to that of baseline Figure 2, only that now
the log of number of weekly hours for which the establishment operated is added to
Regression (12) to account for cross-sectional variation in unobserved input utilization.
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Figure C.3: Two-Way Clustering Approach: Cleansing-Induced Effect.
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Micro-Level Cleansing Effect: Only Continuers
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Beta: Exit Probability

Notes: This figure’s exposition is identical to that of baseline Figure 2, only that now the
two-way standard error clustering approach from Cameron et al. (2011) is used (where
the clustered groups are industries and states) instead of the baseline one-way clustering
approach (where industries are the only group being clustered).
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