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1 Introduction

What is the source of business cycles? This question has been the center of attention for macroe-

conomists for decades but has nevertheless remained a source of debate and disagreement. The

list of potential business cycle shocks that have been studied by the macroeconomics literature is

quite long. A considerable part of this list pertains to technology related shocks: total factor pro-

ductivity (TFP) shocks (see, e.g., Kydland and Prescott (1982), Gali (1999), and Basu et al. (2006));

news shocks about future TFP, i.e., shocks that portend future changes in TFP (see, e.g., Beaudry

and Portier (2006) and Barsky and Sims (2011)); investment-specific technology (IST) shocks (see,

e.g., Greenwood et al. (1988), Fisher (2006), and Justiniano et al. (2010)); and news shocks about

future IST (see, e.g., Ben Zeev and Khan (2015) and Ben Zeev (2018)). In recent years researchers

have also explored shocks that erroneously move expectations about technology, termed noise or

sentiment shocks (see, e.g., Lorenzoni (2009), Blanchard et al. (2013), Angeletos and La’O (2013),

and Forni et al. (2017a,b)). And the recent Great Recession has expectedly spawned research on

credit supply shocks (see, e.g., Gilchrist et al. (2009), Jermann and Quadrini (2012), Gilchrist and

Zakrajšek (2012), and Christiano et al. (2014)).1

What This Paper Does. In general, all of the above-cited works take the approach of identify-

ing a shock of interest and then examining its potential role as a business cycle driver. A notable

exception in this literature is Angeletos et al. (2020), the discussion of which in terms of its rela-

tion to my paper is deferred to the next section and Section 7.) I take a largely agnostic approach

whose aim is to inform us about the existence and nature of the driving force behind business

cycles without needing to identify, ex-ante, any shock. This is done by implementing a Bayesian

VAR-based approach that estimates the set of models in which one shock produces business cy-

cle comovement and drives the majority of business cycle fluctuations. Then, I examine this set

of models and search for common characteristics that can be informative about the nature of the

business cycle shock. This exercise enables me to structurally pin down the type of shock at hand

based on macroeconomic theory as well as narrative information from the large macroeconomic

1For a much more comprehensive and detailed review of business cycle studies, the reader is referred to
Ramey (2016).
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event of the late 1990s and early 2000s boom-bust period.

In particular, via estimation of a Bayesian VAR that includes a number of real aggregates, TFP,

the relative price of investment (henceforth RPI), inflation and interest rates, I first compute all

of the models in which one shock raises output, hours, consumption, and investment on impact

and explains over 50% of these real aggregates’ business cycle variation. Then, I examine the com-

mon features of this shock and find that it encompasses two robust characteristics: i) it drives the

bulk of the long-run variation in RPI and a significant share of that in TFP, reducing the former

and raising the latter; and ii) it behaves in a boom-bust manner in the late 1990s and early 2000s

period, exhibiting significant positive realizations in the former period while experiencing signif-

icant negative realizations in the latter period. The first characteristic allows to determine that the

shock can be reasonably interpreted as a general purpose technology (GPT) shock represented by

either an unanticipated IST shock or an IST news shock as macroeconomic theory implies that IST

is the sole source of the long-run variation in RPI.2,3 The second characteristic permits me to in-

terpret the shock as an IST news shock given the common view by economists that the late 1990s

boom and subsequent early 2000s bust were generally related to overly optimistic expectations

regarding information and communications technology (ICT) that were followed by a downward

revision of these expectations (see, e.g., Beaudry and Portier (2004), Jaimovich and Rebelo (2009),

and Karnizova (2012)). (See Appendix A in Karnizova (2012) for a list of several extracts from aca-

demic and government publications that link the boom and subsequent recession to a downward

2The concept of GPT has been pioneered in Bresnahan and Trajtenberg (1995) who defined it as technol-
ogy characterized by the potential for pervasive use in a wide range of sectors and which is expected to
bring about and foster generalized productivity gains as it evolves and advances. Information and commu-
nications technology (ICT) is commonly considered to constitute a GPT and, since it is an important driver
of IST, it is straightforward to view IST as a GPT. Empirical evidence is consistent with the GPT-view of ICT
and the associated relation between ICT growth and delayed TFP gains (see, e.g., Basu and Fernald (2007)).

3If one allows for IST to be driven by both unanticipated IST shocks as well as IST news shocks, it can be
deduced that these two shocks drive the long run variation in RPI. (The reader is referred to section 3.1 for a
depiction of the general relation between RPI and IST, as implied by macroeconomic theory, where it is also
explained why it is plausible to make the assumption that IST is the sole source of the long-run variation
in RPI.) Hence, as shall be elucidated in Section 3.2, I only consider models in which at least 90% of the
long-run variation in RPI is driven by two shocks, none of which is restricted upon to be the business cycle
shock. (The rather conservative 90% threshold, as opposed to the ideal 100% one, is mainly motivated by
the possibility of measurement error in RPI.) Section 4 presents DSGE model based Monte Carlo evidence
that stresses the importance of this long-run restriction for obtaining a correct structural interpretation of
the business cycle shock.
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revision of overly optimistic expectations regarding ICT.)

It is noteworthy that I identify a business cycle shock directly and then ask what this shock

looks like and whether it has a clear structural interpretation, as opposed to imposing identifying

restrictions on an identified shock and then examining its business cycle implications. My largely

agnostic approach lends credence to the results and their structural interpretation because the

assumptions used for identification of the business cycle shock are sound and reliable. Business

cycle comovement is arguably the most salient feature of economic fluctuations; and for a shock

to be considered the main force behind economic fluctuations, it must account for the majority of

the business cycle variation in the real aggregates that move in tandem over the business cycle.

Accordingly, the shock that drives the business cycle must produce business cycle comovement

and explain most of the business cycle variation in the main macroeconomic real aggregates. I

simply impose on these two attributes to characterize my identified business cycle shock, thus

resulting in a credible identification procedure. That the identified business cycle shock seems to

have a clear structural interpretation supports the notion that there is indeed a single economic

shock that drives the bulk of economic fluctuations.

From a broader standpoint, the findings of this paper stress that the business cycle is driven by

technology related fundamentals rather than noise or policy related shocks. Particularly notable is

the rather strong evidence put forward by this paper that goes against the notion that noise shocks

play a considerable role in driving the business cycle. The noise-driven business cycle hypothesis,

which arguably is a competing hypothesis for the news-driven hypothesis, is inconsistent with

this paper’s findings although one cannot entirely rule out on their basis the possibility that noise

shocks still play some role, albeit limited relative to IST news shocks, in driving the business cycle.

Moreover, while much of the earlier work focused on shocks to TFP or IST that affect only the

fundamental to which they are related, this paper assigns an important role in driving economic

fluctuations to a GPT news shock that can be interpreted as an IST news shock whose delayed

materialization ultimately produces significant TFP gains. As such, the findings of this paper

largely accord with and complement those of Schmitt-Grohe and Uribe (2011), who estimate an

RBC model where a common stochastic trend in neutral and investment-specific productivity is

3



found to be the main source of business cycles.4 I find conceptually similar results to theirs, using a

relatively model-free identification approach, although I also provide a news-based interpretation

of my business cycle driving force.5

Outline. The remainder of the paper is organized as follows. The next section provides a litera-

ture review. In Section 3 the details of the empirical strategy are laid out. Section 4 provides Monte

Carlo evidence from a suitable DSGE model aimed at enhancing confidence in my identification

procedure’s capacity to answer the question posed in the title. Section 5 begins with a description

of the data, after which it presents the main empirical evidence followed by a sensitivity analysis

section. Section 7 provides evidence on the importance of proper RPI measurement in the context

of the results from Angeletos et al. (2020). The final section concludes.

2 Related Literature

The general business cycle literature my paper belongs to is very large and is non-exhaustively

cited above. Here I focus on describing the literature my paper is related to from a methodological

standpoint. The method I use in this paper is based on the inequality restrictions Structural VAR

(SVAR) literature which identifies shocks of interest by employing set identification whereby in-

equality restrictions are imposed so as to generate the set of admissible models. This literature has

mainly focused on imposing restrictions on the sign of impulse responses (see, e.g., Uhlig (2005),

Dedola and Neri (2007a), Mountford and Uhlig (2009), Peersman and Straub (2009), and Kilian

and Murphy (2012)), the sign of the cross correlation function in response to shocks (Canova and

De Nicolo (2002)), and inequality restrictions on the contribution of identified shocks of interest

to the forecast error variance of certain variables (Dedola and Neri (2007b), Ben Zeev (2018), and

4Using a standard Engle-Granger test (Engle and Granger (1987)) for my RPI and TFP measures, I could
not reject the null of no cointegration between these two series. Importantly, however, one should keep
in mind that the lack of evidence for cointegration between my RPI and TFP measures has no bearing on
whether the business cycle shock can drive in tandem the long-run variation in these two variables; the
reason for this is that non-cointegrated series can of course still be driven by the same shocks in the long
run.

5Wagner (2017) estimates a similar model to that used by Schmitt-Grohe and Uribe (2011) but allows
for news shocks to the common stochastic trend in TFP and IST, finding an important role for these news
shocks in driving the business cycle.
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Volpicella (2022)).

The method in this paper incorporates both sign restrictions, i.e., requiring positive impact

effects of the business cycle shock on the real aggregates, as well as restrictions on the forecast

error variance of the real aggregates, so that the identified shock explains more than 50% of their

two-year variation. Moreover, so as to consider models that comply with standard macroeconomic

theory and thus facilitate their coming closer to the true data generating process, I also impose that

at least 90% of the long-run variation in RPI is driven by two arbitrary shocks (none of which is

restricted upon to be the business cycle shock).

I implement the conventional Bayesian inference approach to set-identified SVARs, i.e., I use

a uniform prior for the orthonormal rotation matrix determining the mapping between reduced-

form impulse responses and structural (identified) ones. This uninformative prior assumption

implies nonuniform prior distributions for identified impulse responses, as stressed and criticized

by Baumeister and Hamilton (2015, 2018) who claim that this drawback invalidates results based

on this uniform prior. And this criticism has recently spawned alternative Bayesian inference ap-

proaches which do not suffer from this drawback (Giacomini and Kitagawa (2021) and Volpicella

(2022)). However, Inoue and Kilian (2021) have recently highlighted that this drawback has quan-

titatively negligible effects on the identified impulse responses’ posterior distribution in applied

work in which the set-identification of impulse responses is tight. This tight set-identification fea-

ture is very much a feature of my results, making them unsusceptible to Baumeister and Hamilton

(2015, 2018)’s criticism. Hence, I stick to the conventional Bayesian inference approach in my pa-

per, while also highlighting that the fact that my identification procedure works reasonably well

when applied to artificial data from a suitable DSGE model (see Section 4 and Appendix B.10 of

the online appendix to this paper) further alleviates the concern that the findings from Baumeister

and Hamilton (2015, 2018) have significant consequences for my analysis.

The largely agnostic procedure used in this paper is conceptually similar to that employed

by Uhlig (2003). Using the Maximum Forecast Error Variance (MFEV) method to identify a set

of orthogonal shocks that maximally explain (in decreasing order) output variation over a five-

year horizon, Uhlig (2003) found that two shocks explain more than 90% of output variation at

all horizons. The rather rich array of short- and long-run restrictions I use in this paper seems
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to provide for a more useful framework for studying the sources of business cycles than the nar-

rower set of restrictions used by Uhlig (2003). While my richer set of restrictions does make my

approach somewhat more restrictive, I still view them as a necessary step toward correctly un-

covering the business cycle shock owing to the fact that they are based on rather weak, data-

and theory-consistent assumptions: The short-run restrictions are very much consistent with the

salient comovement feature of business cycles and the long-run restriction accords well with basic

economic theory. Notably, that my methodological approach can directly impose the restrictions

that accurately characterize the nature of the business cycle shock is precisely what makes it a

more suitable device for studying the question in the title of this paper.

Finally, in recent work that applies Uhlig (2003)’s identification approach more comprehen-

sively by separately applying it to several macro variables and by looking at various truncation

horizons, while focusing just on the first shock that moves the most of a particular variable’s

variation, Angeletos et al. (2020) find that the shock that drives most of economic fluctuations

seems to be unrelated to long-run movements in TFP and RPI. On top of the differences already

highlighted in the context of the paper by Uhlig (2003), there are two additional noteworthy dif-

ferences between mine and Angeletos et al. (2020)’s empirical analysis which seem to be driving

the differences between this paper’s and their paper’s results.

First, the measure of RPI used in Angeletos et al. (2020) considers the durable consumption

goods sector along with the total investment sector, as opposed to the finer and more standard

measure covering durable consumption goods and only equipment investment. Considering the

entire investment sector is a too coarse measure for properly constructing a price index that corre-

sponds to IST, which in empirical terms is normally thought to represent technology in producing

firm and household equipment rather than residential or commercial structures. To confirm the

importance of this RPI measurement issue, I took two steps: I applied my estimation procedure to

the RPI measure used in Angeletos et al. (2020), finding small effects of the business cycle shock

on this coarse RPI measure; and I applied the estimation procedure from Angeletos et al. (2020) to

my RPI measure and found meaningful long-run contribution of the business cycle shock to RPI

variation. These results, which are discussed in more detail in Section 7, further stress the impor-

tance of using a suitable, state-of-the-art RPI measure for properly uncovering the true nature of
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the business cycle shock.

Second, while Angeletos et al. (2020)’s estimation approach is broadly similar to mine along

the short-run dimension of the two methodologies, there is meaningful added value from im-

posing my long-run restriction owing to its capacity of reduce the risk of spurious identification

(see Section 4.1) as well as its capacity to avoid the large downward bias in the estimation of the

long-run contribution to RPI variation stemming from the removal of this long-run restriction (see

Appendix B.10 of the online appendix to this paper). Hence, on top of the RPI choice issue, an ad-

ditional advantage of my approach relative to that from Angeletos et al. (2020) is my introduction

of Restriction 2.

3 Methodology

Prior to presenting the empirical strategy in detail, I first explain the underlying framework and

assumptions of the analysis employed in this paper.

3.1 Underlying Framework

While I do take a largely agnostic identification approach in this paper, I also make an attempt to

bridge the gap between my set of identified models and the true data generating process in a way

that relies on rather weak, theory-consistent assumptions. Such an attempt can have value in ad-

vancing a correct structural interpretation of the business cycle shock without needing to directly

impose on this shock anything other than forcing it be the shock that both produces business cycle

comovement and drives the majority of business cycle fluctuations. To achieve this advancement,

I focus on the long-run relation between RPI and IST, which has clear structural discipline that is

implied by a wide variety of models.

Specifically, the general relation between RPI and IST can be illustrated by considering a two-

sector model structure along the lines outlined in Justiniano et al. (2011) with separate imperfectly

competitive investment and consumption sectors. Both sectors are influenced by a common TFP

shock and, in addition, the investment sector is affected by an IST shock. In this set up one can
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derive the following equilibrium equation linking IST with RPI:

ISTt =

(
ac

aI

)(
mcC,t

mcI,t

)(
KC,t

LC,t

)−(1−aC) (KI,t

LI,t

)(1−aI) ( PI,t

PC,t

)−1

, (1)

where aj stands for the capital share in sector j (j = C, I); mcj,t is real marginal cost (or the in-

verse of the equilibrium markup) in sector j; Kj,t/Lj,t represents the capital-labor ratio in sector j;
PI,t
PC,t

is the relative price of investment where PI,t and PC,t represent the prices of investment and

consumption goods, respectively; and ISTt corresponds to investment-specific technology. Many

one-sector DSGE models (e.g., Smets and Wouters (2007)) can be viewed as equivalent represen-

tations of a two-sector model that admits identical production functions across the two sectors,

free sectoral factor reallocation, and perfectly competitive sectors. However, recent research (e.g.,

Basu et al. (2010), Justiniano et al. (2011), and Moura (2018)) has argued that the assumption of

equality between RPI and IST which is based on the latter three conditions is too strong. It is clear

from Equation (1) that if one of these three conditions is not met there will be a wedge between

RPI and IST. Hence, I only make the weak assumption that IST is the sole source of the long-run

variation in RPI.6 This is the underlying identifying assumption made by papers that aimed to

identify unanticipated IST shocks (see, e.g., Fisher (2006) and Canova et al. (2010)) whereby they

conjectured that the only shock that has a long-run effect on RPI is the unanticipated IST shock.

Nevertheless, as opposed to just assuming that one shock drives IST, I allow for the possibility

that part of the variation in IST is anticipated in advance.

In particular, it is assumed that IST is well-characterized as following a stochastic process

driven by two shocks. The first is the traditional unanticipated IST shock, which impacts the

6For IST to be the sole source of the unit root in RPI there would need to be equal capital shares across
the investment and consumption sectors, free sectoral factor reallocation in the long run, and stationarity
of sectoral mark-ups. The latter is implied by macroeconomic theory as standard sectoral Phillips curves
imply that mark-ups are roughly the difference between expected inflation rates and current ones (see, e.g.,
Justiniano et al. (2011)). Moreover, Basu et al. (2010) find that the capital share for the services and non-
durables sector is 0.36 whereas that of equipment and software investment and consumer durables is 0.31.
Given that the two shares are relatively close, and that it is reasonable to assume that in the long run factor
inputs can freely reallocate, it seems sensible to assume that the long-run variation in RPI is driven solely
by unanticipated IST shocks and IST news shocks. Notably, this assumption is quantitatively borne out
by the elaborate two-sector model from Moura (2018), which uses similarly different sector-specific capital
shares (0.36 and 0.30) along with sector-specific nominal frictions as well as labor and capital reallocation
frictions (this model serves as the underlying true data generating process for my Monte Carlo experiments
from Section 4) and Appendix B.10 of the online appendix to this paper.
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level of technology in the same period in which agents observe it. The second is the news shock,

which is differentiated from the first shock in that agents observe the news shock in advance and

it portends future changes in technology. The following is an example process that incorporates

both unanticipated and news shocks to IST:7

εt = εt−1 + gt−j + ηt, (2)

gt = κgt−1 + υt. (3)

Here the log of ISTt, denoted by εt, follows a unit root process where the drift term itself gt−j

follows an AR(1) process with j ≥ 1. j represents the anticipation lag, i.e., the delay between

the announcement of news and the period in which the future technological change is expected

to occur. Parameter 0 ≤ κ < 1 describes the persistence of the drift term. η is the conventional

unanticipated technology shock. Given the timing assumption, υt has no immediate impact on

the level of IST but portends future changes in it. Hence, it can be defined as an IST news shock.

Given the above underlying theoretical framework, I only consider models that are consistent

with Equations (1)-(3) in the empirical analysis below. Specifically, I impose the restriction that

at least 90% of the long-run variation in RPI is driven by two shocks, none of which is restricted

upon to be the business cycle shock. Ideally, one would want to require that 100% of the long-run

variation in RPI is driven by two shocks but given that there could be measurement errors present

in my empirical analysis and that the capital shares in the consumption and investment sectors

seem to be close but not entirely identical, the 90% restriction seems a reasonable compromise.

One may argue that some restrictions on the behavior of TFP should also be incorporated in

my analysis. E.g., if the identifying assumption of Barsky and Sims (2011) that two shocks drive

all variation in TFP at all horizons holds (the first shock being a surprise shock that moves TFP

on impact and the second being a news shock that moves it with a delay), then it is advisable

to restrict the set of identified models to accord with this assumption. However, as stressed by

Kurmann and Sims (2017) and Bouakez and Kemoe (2017), measured TFP likely contains mea-

surement errors which in turn lead to a violation of the aforementioned identifying assumption.8

7A similar process was used by Leeper and Walker (2011), Barsky and Sims (2011, 2012), and Leeper
et al. (2013).

8The focus in Kurmann and Sims (2017) is on the large revisions in the widely-used series of utilization-
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Moreover, even if these measurement errors are transient, restricting the long-run behavior of TFP

may be erroneous on the grounds that other shocks, such as GPT-type shocks, could drive some of

the long-run variation in TFP. Therefore, I leave TFP behavior unrestricted in my analysis, which

ex-post turns out to be a reasonable choice given that the business cycle shock drives the bulk of

the long-run variation in RPI and also a considerable share of that in TFP.

3.2 Generating the Set of Admissible Models

My methodology is a set identification VAR-based method which generates a set of admissible

models that comply with a defined set of restrictions, to be described below in detail. The method

is a set identification one because the imposed restrictions admit a system of inequalities that in

general will have either no solution or a set of solutions. This set of solutions constitutes the set of

models that satisfy my imposed restrictions. I employ Bayesian estimation and inference using a

baseline empirical VAR that consists of the real aggregates, TFP, RPI, inflation, and interest rates.

Specifically, Let yt be a kx1 vector of observables of length T and let the VAR in the observables

be given as

yt = B1yt−1 + B2yt−2 + ... + Bpyt−p + Bc + ut, (4)

where Bis are matrices of size kxk, p denotes the number of lags, Bc is a kx1 vector of constants,

and ut ∼ i.i.d. N(0, Σ) is the kx1 vector of reduced-form innovations where Σ is the variance-

covariance matrix of reduced-form innovations. For future reference, let the stacked (kp + 1)xk

B = [B1, ..., Bp, Bc]′ matrix represent the reduced form VAR coefficient matrix. Hence, the reduced

form VAR parameters can be summarized by the coefficient matrix B and variance covariance

matrix Σ.

adjusted TFP from Fernald (2014) and these revisions’ substantial effect on empirical conclusions about
the macroeconomic effects of TFP news shocks identified using the Barsky and Sims (2011) method, with
identified TFP news shocks found to produce business cycle comovement for newer TFP vintages while
failing to do so for older ones. Interestingly, and largely in accordance with the newer TFP vintages issue
highlighted by Kurmann and Sims (2017), I find that older TFP vintages such as from 2011 respond to the
business cycle shock to a much lesser extent. Nevertheless, since newer TFP vintages likely contain less
measurement error than older ones and as such constitute better proxies for true TFP, I utilize the most
recent Fernald (2014) TFP vintage in my estimations and place more trust in results based on this series
than those based on older TFP vintage series.
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It is assumed that there exists a linear mapping between the reduced-form innovations and

economic shocks, et, given by

ut = Aet. (5)

The impact matrix A must satisfy AA′ = Σ. There are, however, an infinite number of impact

matrices that solve the system. In particular, for some arbitrary orthogonalization, C (e.g, the

Cholesky factor of Σ), the entire space of permissible impact matrices can be written as CD, where

D is a k x k orthonormal matrix (i.e., D′ = D−1 and DD′ = I, where I is the identity matrix).

Given an estimated reduced form VAR, standard SVAR methods would try to deliver point

identification of at least one of the columns of A whereas set identification methods would gen-

erate the set of admissible models. In the set identification approach the aim is to draw a large

number of random Bs, Σs, and Ds from their posterior distributions so as to generate a large set of

models (a model here can be represented by the matrix triplet {B,Σ,D}) from which the set of ad-

missible models can be obtained by checking which models comply with the imposed restrictions.

I take 106 such posterior draws, while following the conventional Bayesian approach to estimation

and inference taken by the sign restrictions literature (see, e.g., Uhlig (2005), Mountford and Uhlig

(2009), Peersman and Straub (2009), and Kilian and Murphy (2012)) in assuming a normal-inverse

Wishart prior distribution for the reduced-form VAR parameters and a Haar distribution for the

orthonormal D matrix.9 Appendix A of the online appendix to this paper contains a detailed

description of the Bayesian estimation procedure used in this paper.

The restrictions that I impose on the set of admissible models are as follows:

1. One shock, belonging to the vector of economic shocks et, raises on impact the real aggre-

gates, i.e., output, hours, consumption, and investment, and explains at least 50% of the

two-year variation of the real aggregates.

2. At least 90% of the long-run variation in RPI is driven by two arbitrary shocks belonging to

et, none of which is restricted upon to be the business cycle shock from Restriction 1.

9I follow the efficient method proposed by Rubio-Ramirez et al. (2010) for generating orthonormal ma-
trices and the associated identification, impact matrices.
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Imposing Restriction 1 constitutes a necessary step for directly examining the nature of the driv-

ing force of business cycle fluctuations. The latter Restriction ensures that the estimated set of

admissible models only contains models in which one shock explains the majority of business

cycle fluctuations. Note that I also require that this shock is capable of generating business cycle

comovement by restricting the real aggregates to rise at the impact horizon in response to the busi-

ness cycle shock. This is an important restriction given the stylized fact that the real aggregates

move in tandem over the business cycle. Hence, the shock that I am trying to capture both gener-

ates business cycle comovement and explains the majority of business cycle fluctuations. Notably,

however, this initial step in and of itself is not sufficient for providing an answer to the sought

after question of this paper as it would also be necessary to examine the common characteristics

of the business cycle shock so as to determine if there is truly a single common economic shock

that drives the majority of business cycles.

Restriction 2 ensures that I am only considering models that are consistent with Equations (1)-

(3) so as to impose some structural discipline on the estimated models in terms of being consistent

with standard macroeconomic theory. This in turn facilitates bringing the identified models closer

to the true data generating process, which can have much value in advancing a correct structural

interpretation of the business cycle shock. Note that Restriction 2 is independent of Restriction 1

in that the two shocks driving the long-run variation in RPI can be any pair of shocks belonging

to et. I.e., I do not restrict upon the business cycle shock to be one of the shocks contained in this

pair, effectively letting the data determine if the business cycle shock belongs to this pair. Section

4 and Appendix B.10 of the online appendix to this paper present DSGE model based Monte Carlo

evidence that stresses the importance of this long-run restriction for obtaining a correct structural

interpretation of the business cycle shock.

I search over all drawn models and collect only those models that comply with Restrictions 1

and 2 whereas models that do not comply with these restrictions are discarded. Once all of the

models are collected, it is possible to analyze them and try to structurally characterize the business

cycle shock.
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4 Suitability of Methodology for Answering the Question
In the Title

One may argue that this paper’s identification approach may pick up a combination of shocks,

rather than a single one, thus leaving the question posed in this paper’s title inconclusively an-

swered. To address this concern, I conduct two Monte Carlo experiments based on an appropriate

DSGE model with endogenous RPI. In the first experiment, I apply my identification approach

to artificial data generated from a data generating process (DGP) where IST news shocks do not

conform to the definition of a business cycle shock in their not producing comovement. In the sec-

ond experiment I use a DGP where IST news shocks comply with the identifying restrictions from

Restriction 1. (I accommodate these two rather different DGPs by utilizing two different param-

eterizations of the same structural framework, which is based on the elaborate model structure

from Moura (2018). The details of the model and its calibration appear in Appendix B of the on-

line appendix to this paper.) Taken together, the evidence from these two experiments bolsters the

empirical results shown so far in alleviating the above-mentioned concern about their potential

spuriosity and accordingly enhancing confidence in their ability to provide a positive answer to

the question in this paper’s title. To keep the exposition minimal, I present here only the results

from the first experiment and defer the presentation of the second experiment and its results to

Appendix B.10 of the online appendix to this paper.10

4.1 Monte Carlo Experiment: A Model where IST News Do Not Pro-
duce Comovement

Objective. The objective of the experiment of this Section is to demonstrate what my identifica-

tion approach yields when the true DGP contains IST news shocks that fail to induce comovement.

Specifically, I use a DSGE model where TFP news and monetary policy shocks produce comove-

ment but neither of them explains more than 25% of the two-year variation in output, while IST

news shocks explain the majority of the latter variation but fail to produce comovmement. Un-

10I also show in Appendix B.11 of the online appendix results from an experiment where news shocks are
imperfectly observed from noisy signals, as opposed to the full-information structure underlying the results
from the baseline experiments, demonstrating the robustness of the simulation results to the presence of
such imperfect-information structures.
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derstanding what follows from my identification approach in this type of setting is important for

alleviating the concern that this paper’s results are merely an outcome of identifying a combina-

tion of shocks.

Data Simulation. The Monte Carlo experiment is conducted as follows. I generate 100 artificial

data sets from the model from Appendix B of the online appendix to this paper with a sample

size of 235 observations and apply my identification procedure (based on 105 posterior draws)

involving Restrictions 1 and 2 to each artificial data set using a VAR that is identical to the baseline

empirical VAR. Since the model is solved via log-linearization around the steady state, I add the

model-consistent steady state growth rates to the simulated non-stationary variables as well the

steady state values to the simulated stationary variables. To gain an understanding as to the

importance of imposing the long-run restriction (Restriction 2) in my analysis, I present results for

two cases: i) the baseline case, where I impose both Restriction 1 and Restriction 2 when applying

my estimation procedure to the artificial data sets and ii) an alternative case, where I only impose

Restriction 1.

Baseline Case. The first row of Table 1 presents the share of simulations in which identification

was null along with the average admissibility rate (average number of admissible models divided

by total number of posterior draws (105)) for the simulations that did produce a non-null set of

admissible models, where both Restriction 1 and Restriction 2 are imposed in the identification

procedure. Ideally, one would want to see that in all simulations a zero admissibility rate obtains,

i.e., null set of identified models for all simulations, as this would strongly support the capacity

of my procedure to avoid spurious identification. As shown Table 1, the results are very close to

ideal: 96 out of the 100 simulations lead to a null set of identified models and for the 4 simulations

which do not there is an average admissibility rate that is much lower than its baseline empirical

counterpart reported on Page 17 (1.75× 10−5 compared to 129.7× 10−5).11 In fact, in three of the

11Importantly, one need be careful in considering the size of the set of admissible models as an indication
for the validity of the identifying restrictions. As Kilian and Lutkepohl (2017) point out in Chapter 13,
the estimates of sign-identified models are conditional on the chosen identifying assumptions which are
in turn not testable within the SVAR framework. (To see this, consider an asymptotic world where the
reduced form VAR is perfectly estimated and also assume that identifying restrictions are correct. In this
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non-null four simulations, only one admissible model was identified out of 105 posterior draws

with the remaining simulation yielding a set of only 4 admissible models. Overall, the findings

from the first row of Table 1 indicate that it is very unlikely that my identification procedure

would spuriously identify a business cycle shock if the true model contained several shocks that

individually comply with only part of my procedure’s identifying restrictions.

Removing the RPI Long-Run Restriction. The second row of Table 1 presents the share

of simulations in which identification was null along with the average admissibility rate for the

simulations that did produce a non-null set of admissible models, only now from only imposing

Restriction 1 in the estimations. The risk of spurious identification seems low also in this case,

with only 15% of the simulations resulting in non-null identification. However, this risk is still

much greater than that observed for the baseline estimation case (nearly 4 times as much). This

emphasizes one dimension of the added value from imposing Restriction 2, which is related to

the significantly reduced risk of spurious identification when the true DGP does not contain a

single business cycle shock. The other dimension, which is related to the added value from doing

so when the true DGP does contain a single business cycle shock and speaks to the considerable

downward bias in the estimation of the shocks’s long-run contribution to RPI variation resulting

from removing Restriction 2, is discussed in Appendix B.10 of the online appendix to this paper.

Lastly, it is also noteworthy that the fact that the admissibility rate observed in actual data when

applying my estimation procedure without imposing Restriction 2 (reported on Page 26) is much

higher than the very low admissibility rate reported in the second row of Table 1 (2.67× 10−5) is

also not supportive (like that from the first row) of the notion that it is likely that the true DGP

behaves similarly to that implied by the DSGE model at hand (i.e., a model where no business

cycle shock exists).

kind of world there is only one impact matrix compatible with the reduced form VAR, i.e., upon applying
an estimation algorithm such as mine one should get one admissible model.) I am merely using the size
of the set of admissible models here to highlight that the stark differences between actual and Monte Carlo
based admissibility rates are not supportive of the notion that it is likely that the true DGP corresponds to
the DSGE model at hand, i.e., a model where there is no single business cycle shock but a combination of
shocks individually complying only in part with my identifying restrictions.
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5 Empirical Evidence

In this section the main results of the paper are presented. I first provide a brief description of the

data used in my analysis, followed by the main empirical results from my baseline VAR.

5.1 Data

The baseline VAR includes eight variables: TFP, RPI, output, hours, consumption, investment,

inflation, and interest rates. For the TFP series, I employ the quarterly series on total factor pro-

ductivity (TFP) for the U.S. business sector, adjusted for variations in factor utilization (labor effort

and capital’s workweek), constructed by Fernald (2014).

RPI is measured in the standard way as a quality-adjusted investment deflator (see, e.g., Green-

wood et al. (1997, 2000), Fisher (2006), Canova et al. (2010), Beaudry and Lucke (2010), and Liu

et al. (2011)) divided by a consumption deflator. The quality-adjusted investment deflator cor-

responds to equipment and software investment and durable consumption and is based on the

Gordon (1990) price series for producer durable equipment (henceforth the GCV deflator), as later

updated by Cummins and Violante (2002), so as to better account for quality changes. More re-

cently, Liu et al. (2011) used an updated GCV series constructed by Patrick Higgins at the Atlanta

Fed. I use this updated series for the recent 2017:Q3 vintage, spanning the period 1959:Q1:2017:Q3,

as my measure for the quality-adjusted investment deflator.12 (The ending date of this series dic-

tates that of the sample used in my estimation.) The consumption deflator corresponds to non-

durable and service consumption, derived in chain-weighted form from the National Income and

Product Accounts (NIPA).

The nominal series for output, consumption, and investment are taken from the Bureau of

Economic Analysis (BEA). Output is measured as GDP, consumption as the sum of non-durables

and services consumption, and investment is the sum of personal consumption expenditures on

durables and gross private domestic investment. The nominal series are converted to per capita

terms by dividing them by the civilian non-institutionalized population aged sixteen and over. I

use the corresponding chain-weighted deflators to obtain the real series. The hours series is log

12I thank Patrick Higgins at the Atlanta Fed for providing me with this series. The reader is referred to
the appendix in Liu et al. (2011) for a description of the methods used to construct the series.
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of per capita total hours worked in the non-farm business sector. Inflation is measured as the

percentage change in the CPI for all urban consumers and the nominal interest rate is the three

month Treasury Bill rate. To convert monthly population, inflation, and interest rate series to

quarterly series, I take the average over monthly observations from each quarter. The data series

span the period 1959:Q1-2017:Q3.

5.2 Baseline Results

I first present the impulse responses and forecast error variance (FEV) decomposition results with

respect to the business cycle shock after which results pertaining to the shock realizations are

presented. Both sets of results enable me to derive a structural interpretation of the shock.

Impulse Responses and Variance Decompositions. My empirical VAR includes eight vari-

ables: TFP, RPI, output, investment, consumption, hours worked, inflation, and interest rates.

Apart from hours, inflation, and interest rates, which are assumed to be stationary and enter the

system in levels, all other variables enter the system in first differences. Importantly, Restrictions 1

and 2 are imposed on the cumulative impulse responses of the relevant first-differenced variables

so that variables’ responses at a particular horizon correspond to the difference between their levels

in that horizon and their pre-shock level (relative to cumulative trend growth up to that horizon).

The system is estimated as a stationary VAR as opposed to a VAR in levels due to the superiority of

the former over the latter in terms of the identification of the long-run impulse responses (Phillips

(1998)).13 The Akaike information criterion favors four lags whereas the Schwartz and Hannan-

Quinn information criteria favor two and one lags, respectively. As a benchmark, I choose to

estimate a VAR with three lags. The results are robust to using a different number of lags.

The set of admissible models consists of 1297 models (out of a total of 106 posterior draws

of models). Figures 1a and 1b depict the median and 84th and 16th percentiles of the posterior

distributions of impulse responses and FEV contributions at all horizons up to the 10-year one,

13Applying the cointegration test developed in Pesaran et al. (2001) to my model, which is a mixture of
both non-stationary and stationary variables and thus requires using the cointegration test from Pesaran
et al. (2001), I found no evidence for cointeration among the non-stationary variables in my model. There-
fore, I resorted to estimations that abstract from cointegration.
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respectively.

By construction, the identified shock raises the real aggregates (output, hours, investment,

and consumption) on impact and drives the bulk of their business cycle variation. The 16th per-

centile impact effects of IST news shocks on output, hours, investment, and consumption are

0.32%, 0.19%, 1.1%, and 0.2%, respectively, while the median impact effects are 0.41%, 0.26%,

1.4%, and 0.26%, respectively. All of the latter effects are economically significant and point to the

strong business cycle comovement that the business cycle shock generates. It should be noted that

these significant effects are not imposed upon by construction as the only restriction imposed on

the impact effects is that they are positive. The 16th percentile contributions of IST news shocks

to the variation in output, hours, investment, and consumption at the two-year horizon are 59%,

55%, 55%, and 53%, respectively, while the median contributions are 68%, 66%, 63%, and 61%,

respectively, all indicating that the identified shocks are the major force behind the business cycle.

While the latter contributions were restricted to be at least 50%, it is apparent that a large part of

the distribution of contributions clearly contains bigger values.

In terms of the implications of the business cycle shock for inflation and interest rates, the

results indicate that the shock is deflationary and raises interest rates. That inflation falls in tandem

with the rise in economic activity makes it unlikely that the business cycle shock is a pure demand

shock, or at least a shock whose main propagation mechanism is demand driven. This observation

allows to argue that it is unlikely that the business cycle shock corresponds to demand-type shocks

such as monetary policy shocks, government spending shocks, noise shocks, credit supply shocks,

and uncertainty shocks.

So as to obtain information on the structural features of the shock, I now turn to focusing on

its long-run implications for RPI and TFP. Table 2 shows the median and 84th and 16th percentiles

of the long-run impulse responses and FEV shares of RPI and TFP due to the business cycle shock.

The median contributions to the long-run variation in RPI and TFP are 80% and 54%, respectively,

with corresponding long-run impulse responses of -2.4% and 1%. These estimates clearly indicate

that the business cycle shock has very large effects on both variables, where that on RPI strongly

suggests that this shock is likely to be an IST shock. In the presence of the standard assumption

that IST shocks are the sole source of the long-run variation in RPI, this 80% FEV contribution
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estimate implies that the business cycle shock is very unlikely to contain a non-IST shock.

More formally, note that any identified shock is a linear combination of reduced form inno-

vations, each of which is itself a linear combination of structural shocks (under the standard as-

sumption of equality between the number of observables and number of structural shocks); this, in

turn, renders the identified business cycle shock representable as a linear combination of shocks

that include both IST and non-IST shocks. Hence, the fact that it explains 80% of the long-run

variation in RPI implies that the weight on the non-IST shock portion of this linear combination

is 1− 0.80.5, or 9%.14,15 This emphasizes the importance of the RPI FEV results in facilitating the

structural interpretation of the business cycle shock as an IST shock. And, importantly, it rules out

the interpretation of the business cycle shock as a TFP shock.

How, then, can one interpret the strong long-run effect of the business cycle shock on TFP?

Notably, the effect on TFP only becomes really noticeable at medium- to long-run horizons. E.g.,

we see from Figure 1b that only 10% of TFP variation is accounted for by the business cycle shock

at the five-year horizon. This TFP behavior is consistent with a GPT-based interpretation of IST

where gains in the latter lead to medium- and long-run gains in TFP by inducing long-term funda-

mental changes in the production process of the sectors using the new IST-related goods. (These

results are consistent with those from Chen and Wemy (2015), who find that IST changes are an

important source of long-run TFP movements.) Taken together, the results on the long-run behav-

ior of RPI and TFP indicate that the business cycle shock is either an unanticipated IST shock or an

IST news shock, as macroeconomic theory implies that IST is the long run driver of RPI, and that

owing to their general-purpose nature IST improvements lead to long-term gains in TFP. I now

turn to demonstrating how additional information on the shock series itself can help distinguish

14To see this, denote the identified business cycle shock by εbs
t and let it be represented as a weighted

average of IST and non-IST shock components, εbs
t = ω1εist

t +ω2εnon ist
t . (The εist

t component can be taken to
be the sum of surprise and anticipated IST shocks, while εnon ist

t can be taken to be the sum of all remaining
non-IST shocks.) Since in the long run only the first component should have a non-negligible contribution
to RPI variation and since the long-run RPI FEV attributable to the business cycle shock is 0.8, we can
deduce that ω2

1 = 0.8. But since ω1 + ω2 = 1, we obtain that ω2 = 1− 0.80.5 = 0.09.
15Note that the long-run estimates are not directly shown in Figures 1a and 1b as these figures pertain

to only the first 10 years following the shock whereas the long-run estimates are computed from the per-
manent responses of the non-stationary variables. Given the rather strongly gradual nature of the impulse
response of RPI and TFP, the 10 year estimates are downward biased estimates of the long-run response
estimates.
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between the two IST shocks and provide an interpretation of the shock as an IST news shock.

Boom-bust Behavior of the Shock in the Late 1990s-Early 2000s Period. The real econ-

omy and stock market experienced a significant boom in the late 1990s which was followed by a

bust in the early 2000s. In particular, in the period 1997-1999 Shiller’s cyclically adjusted price-

earnings ratio, computed as the ratio of the real price of the S&P 500 index to average real earn-

ings over the previous 10 years, reached its highest levels in the sample peaking at the end of 1999

from which point it began its bust period bottoming out in February 2003. The common view by

economists is that the boom and subsequent bust were generally related to overly optimistic ex-

pectations about IST that were followed by a downward revision of these expectations (see, e.g.,

Beaudry and Portier (2004), Jaimovich and Rebelo (2009), Karnizova (2012) (see also references

therein), and Ben Zeev (2018)).

The first two rows of Table 3 present the median and 84th and 16th percentiles of the average

value of the 1997:Q1-1999:Q4 and 2000:Q1-2003:Q1 shock sub-series for both the business cycle

shock and the other shock driving the long-run variation in RPI, respectively.16 It is apparent that

a clear boom-bust pattern is prevalent in the business cycle shock series where the average shock

realization is significantly positive in the boom period while being significantly negative during

the bust period. The median mean realization for the business cycle shock in the boom period is

0.49 standard deviations compared to 0.04 standard deviations for the corresponding counterpart

of the other long-run RPI shock. The median mean realization of the bust period is -0.38 for the

business cycle shock compared to -0.06 for the other long-run RPI shock. And the posterior bands

around these median estimates clearly indicate that one can be fairly confident in inferring that

the business cycle shock strongly exhibits a boom-bust type behavior in the late 1990s and early

2000s period, whereas the other long-run RPI shocks exhibits no such clear pattern.

16In 1233 models out of the set of 1297 admissible models the business cycle shock is also one of the two
IST shocks, i.e., the shocks driving long-run RPI variation. Moreover, out of these 1233 models, the other
long-run RPI shock explains at least 5% of the long-run variation in RPI in 982 models. Hence, the results
on the other long-run RPI shock are based on these 982 models so as to only consider models where the
other long-run RPI shock is a true IST shock rather than possible measurement error. Notably, I also show
the results on the other long-run shock as it is important to check that the other shock that explains the
long-run variation in RPI does not display this boom-bust pattern given that this would undermine my
ability to obtain a structural interpretation of the business cycle shock based on the boom-bust feature.
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While the above-reported results demonstrate that the business cycle shock exhibits an ap-

parent boom-bust behavior in the late 1990s and early 2000s period, it seems worthwhile to also

compute the historical decomposition of this boom-bust period in terms of the contribution of the

two shocks to movement in investment over this period given that this period is considered to

have been an investment-driven episode. The first two rows of Table 4 present the median and

84th and 16th percentiles of the relative contribution of the business cycle shock and the other

long-run shock to the movement in investment in the boom-bust period, respectively. In particu-

lar, the results from Table 4 show, in percentage terms, how much of the movement in investment

in the boom and bust periods is accounted for by the two shocks.17 It is clear from Table 4 that

the business cycle shock accounts for a very significant share of both the investment boom in

the late 1990s as well as the subsequent investment bust in the early 2000s. The median shares

in the boom and bust periods explained by the business cycle shock are 97% and 161%, respec-

tively, while those explained by the other long-run RPI shock are very negligible and statistically

insignificant. The 16th percentile shares explained by the business cycle shock for the boom and

bust periods are also large, amounting to 62% and 94%, respectively. These are very strong results

which indicate that the business cycle shock is the main force behind the boom-bust investment

episode of 1997-2003, whereas the other long-run RPI shock is a negligible one.

Taken together, the results presented so far indicate that the business cycle shock can be inter-

preted as an IST news shock whose GPT-based properties lead to long-term gains in TFP. I now

turn to showing that this shock has also played an important role in driving the actual recessions

that have taken place in my sample period.

Historical Decomposition. My use of the FEV restriction in defining the business cycle shock

in this paper is based on the notion that such a shock should have a major contribution to economic

fluctuations on average. But one additional property such a shock should desirably posses is having

an important role in driving actual, historical economic downturns. To test whether my business

17The relative contribution is computed as
contribution o f shock

percentage change in investment in deviation f rom steady state growth , where
the annual steady state growth rate for investment is assumed to be 2.8%, which is the average growth
rate in the sample period. Note that a relative contribution of one implies that all of the gain or loss in
investment is accounted for by the shock. Investment increased relative to its steady state growth by 17%
in the boom period while it declined by 11% in the bust period relative to its steady state growth rate.
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cycle shock posses this property, I have computed the historical contribution of this shock to the

eight NBER-determined U.S. recessions since 1959.

Table 5 shows the results from doing this historical decomposition. In particular, for each

recession the median contribution of the business cycle shock to the peak-to-trough percentage

change in each of the four real aggregates’ per capita levels (in deviation from trend growth) is

estimated. Trend growth rates are computed from the average growth rates of corresponding per

capita real aggregates over the sample. The results indicate that the business cycle shock was an

important driving force behind seven of the last eight U.S recessions. The only recession in which

the business cycle shock played a limited role was the 1981-1982 recession, which is commonly

thought of as having been driven by aggressively contractionary monetary policy. Apart for this

recession, the business cycle shock contributed to all recessions in an economically and statistically

significant manner.

The most recent recession (2007-2009), in which output loss was 7.9%, seems to have been

driven in large part by the business cycle shock which contributed 5.5% to that accumulated de-

cline.18 The business cycle shock has also contributed 2.6%, 3.9%, and 1.5% to the accumulated

2.6%, 5.6%, and 2.6% output losses during the 1960-1961, 1973-1975, and 1990-1991 recessions, re-

spectively. Moreover, that 1.2% of the 1.7% output loss in the 2001 recession is attributed to the

business cycle shock is consistent with the IST-news-based interpretation of this shock advanced

in this paper, which draws on the notion that a downward revision of expectations about future

IST took place after the IST news driven boom of the late 1990s.

Overall, the historical decomposition results emphasize that the business cycle shock is not

only a dominant driver of U.S. business cycles on average, but also a dominant driver of actual

historical recessions that have taken place in my sample period.

18Importantly, the results of this paper are not driven by the inclusion of the recent recession in the sample
as I have confirmed that stopping the sample at 2007:Q4 yields similar results to the baseline ones. These
results are presented in Appendix D.4 of the online appendix to this paper.
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6 Robustness Analysis

I have examined the robustness of the baseline results along ten dimensions. The first deals with

showing that the stationary hours specification is superior to a non-stationary hours one, where

the latter is demonstrated to be an erroneous modeling choice that likely leads to misguided infer-

ence. The second confirms that the business cycle shock’s IST-news-based structural interpretation

is robust to removing the long-run restriction (Restriction 2). The third speaks to the possibility

that there may not exist a perfect linear mapping between VAR innovations and economic shocks.

The fourth is that over the entire sample period VAR innovations may not be homoscedastic and

VAR coefficients may not be stable. The fifth relates to the inclusion of stock prices in the VAR.

The sixth concerns the potential implications of the financial crisis and zero lower bound (ZLB)

periods for my results. The seventh pertains to the stationary specification choice used in my

baseline VAR. The eighth and ninth concern the robustness of the results to using Fernald (2014)’s

investment TFP measure and a PCE-based inflation measure, respectively. And the last deals with

only imposing that consumption rise on impact following the business cycle shock.

To keep the exposition minimal, I present here only the first two dimensions of my robustness

analysis. The remaining eight, whose results continue to support the main message of the paper,

are shown in Appendix D of the online appendix to this paper.

6.1 Hours Stationarity and the Low-Frequency Comovement between
Hours and RPI and TFP Growth Rates

The results presented above were obtained from a VAR in which hours worked were assumed to

be stationary and thus entered the system in levels. However, entering hours in differences in the

VAR results in a negligible contribution of the business cycle shock to the variation in both RPI

and TFP. (The impulse responses and FEV contribution results for the differenced hours specifi-

cation appear in Figures 2a and 2b, respectively.) The contributions of the shock to the long-run

variation in RPI and TFP, not directly shown in Figure 2b, are 2% and 5%, respectively. While

the differenced hours specification results in a permanent effect of the business cycle shock on

hours (again, not directly shown in Figure 2a, but is clearly indicated by the leveling-off of the
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response at medium-run horizons), which is at odds with standard macroeconomic theory and

thus limits the credibility of this specification as a suitable way for modeling hours, the results

from the differenced hours specification are still a concern whose source is worth exploring and

understanding.

Motivated by the controversy regarding how hours should be entered in the VAR when try-

ing to identify technology shocks, Gospodinov et al. (2011) highlighted that even a small low-

frequency correlation between hours and productivity growth can account for the difference in

results on technology shocks between levels and first-differenced specifications, as the latter cor-

relation is allowed for in the levels specification but is implicitly shut down in the differenced

specification. I shall now demonstrate that the low-frequency correlation of hours with the growth

rates of RPI and TFP is very large, making it all the more important to enter hours in the VAR in

levels so as to allow for this low-frequency correlation rather than to erroneously shut it down via

the differenced hours specification.

Low-Frequency Correlations. Table 6 shows the correlations between the HP trends of log

and log-first-differences of hours worked and HP trends of log-first-differences of RPI and TFP.

While the low-frequency correlations of hours in levels with RPI and TFP growth rates are very

high (-0.74 and 0.52, respectively), they are negligible and even oppositely signed when hours are

considered in log-first-differences. This stresses the importance of entering hours in levels so as

to allow for its strong low-frequency comovement with RPI and TFP growth rates, as opposed

to wrongly eliminating it via a first-difference specification. Since Gospodinov et al. (2011) have

reported significant biases from a first-differenced specification in the presence of even a small

low-frequency component, it is likely that the strong correlations reported in Table 6 would lead

to significant biases for my setting if I were to estimate a VAR with log-first-differenced hours.

Monte Carlo Experiment. To formalize the argument that the correlations from Table 6 can

lead to significant estimation bias from first-differencing hours, I now present evidence from the

following Monte Carlo experiment. I generate 100 artificial data sets from VARs that are identical

to my empirical VAR, i.e., with hours worked in levels and which comply with Restrictions 1 and
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2, and apply my identification procedure (based on 105 posterior draws) to each artificial data set

using a VAR that includes hours in first-differences. The objective of this experiment is to study

the long-run estimation bias from erroneously entering hours in first-differences in the VAR.19

Figures 3a and 3b show the mean estimated median and 84th and 16th percentile impulse

responses and FEV contributions, along with the corresponding mean true responses and contri-

butions from the true model. The mean estimated impulse responses and FEV contributions are

averages over monte carlo simulations; the mean true impulse responses and FEV contributions

are averages over the 100 DGPs. It is apparent that the mean estimated median responses and

FEV contributions for RPI and TFP are significantly downward biased. E.g., while the true FEV

contribution to RPI 10-year variation is 57%, the average estimated median contribution is 23%.

The numbers for the long-run horizon (not directly shown in the figures) are similarly far apart at

80% and 38%. Similar discrepancies hold for TFP also.

Notably, the proportion of Monte Carlo simulations where estimated median long-run con-

tributions to RPI and TFP FEVs are both below 0.1 is 36% (i.e., for 36 out of the 100 considered

artificial data sets, my identification produces an estimated median long-run RPI and TFP FEV

contribution of less than 0.1); the proportion for the contributions being both below 0.05 is 24%.

These significant proportions indicate that it is very much possible that applying an erroneous

differenced hours VAR specification to the actual data could result in the negligible long-run FEV

shares I find when specifying hours in first-differences, supporting the view that the actual data is

likely generated by a stationary hours based DGP. In sum, these proportions stress the strong like-

lihood of erroneously inferring that the business cycle shock is unrelated to long-run movements

in RPI and TFP when using a VAR with differenced hours.

19Appendix C of the online appendix to this paper also presents evidence from an additional experiment
that is identical to the first only that I apply there my identification procedure to each artificial data set
using a VAR that includes hours in levels, rather than first-differences. The objective of that experiment
is to examine the identification precision from correctly specifying hours in levels. Further details on the
DGP used for these two experiments are also deferred to the online appendix to this paper so as to save
space. Appendix C.2 of the online appendix also presents simulation evidence from removing hours from
the VAR, which was found to produce similar results to those from first-differencing hours. These Monte
Carlo results are also consistent with the general message of this paper.
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6.2 Lifting the Long-Run Restriction.

The structural discipline Restriction 2 puts on the long-run behavior of RPI is valuable for the

structural interpretation of the business cycle shock as it uses rather weak assumptions to make the

set of admissible models be more theory-consistent and hence facilitates their coming closer to the

true data generating process. (DSGE model based Monte Carlo evidence supporting this argument

is shown in Section 4 and Appendix B.10 of the online appendix to this paper.) Notwithstanding

the merit of including Restriction 2 in the analysis, one may argue that showing that the structural

interpretation of the business cycle shock advanced in this paper holds also in the absence of this

restriction can serve to increase this interpretation’s validity.

Toward this end, I now present results from estimating the baseline VAR without imposing

Restriction 2. The impulse responses and FEV contributions are shown in Figures 4a and 4b,

respectively, while the first two rows of Table 7 depict the long-run impulse response and FEV

contributions of the business cycle shock for RPI and TFP and the first two rows of Table 8 present

its mean realizations for the boom-bust period and contribution to the variation in investment

over this period. The results are based on 106 randomly generated models from which a total of

17176 admissible models were collected.

It is clear that the business cycle shock still has a significant and rather large effect on both RPI

and TFP, explaining 44% and 38% of their long-run variation, respectively. While these numbers

are lower than their baseline counterparts, they are still sufficiently large on their own to make a

valid case that there is likely to be an important IST shock component in the business cycle shock.

Notably, the difference between the baseline 80% number and the 44% number accords well with

the Monte Carlo results from Appendix B.10 of the online appendix to this paper, which indicate a

large downward bias in the estimation of the long-run contribution to RPI variation resulting from

removing Restriction 2. Turning to the boom-bust based results from Table 8, it becomes apparent

that the business cycle shock continues to exhibit a very clear boom-bust pattern over the late

1990s-early 2000s period in tandem with explaining most of the variation in investment over this

period. Taken together with the long-run based results, and drawing again on the IST-news-based

narrative of this period, these findings indicate that the business cycle shock is likely to be an IST
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news shock.

7 The Importance of Properly Measuring RPI

In recent work that applies Uhlig (2003)’s identification approach more comprehensively by sep-

arately applying it to several macro variables and by looking at various truncation horizons, An-

geletos et al. (2020) find that the shock that drives most of economic fluctuations seems to be

unrelated to long-run movements in TFP and RPI. As argued on Page 6, an important source of

the differences between mine and Angeletos et al. (2020)’s results lies in the measure of RPI being

used. Specifically, the RPI measure in Angeletos et al. (2020) considers all investment sub-sectors

(along with consumer durables), including residential and commercial structures, which the lit-

erature has not regarded as possessing the same type of underlying technology as the commonly

considered sub-sectors of investment equipment and consumer durables do. (Their measure also

does not account for quality adjustment as previous literature has because of their not using the

GCV deflator series.)

To confirm the importance of this RPI measurement issue, I conduct the following three es-

timation exercises. The first consists of applying my baseline estimation procedure to the RPI

measure used in Angeletos et al. (2020) while the second and third apply the estimation proce-

dure from Angeletos et al. (2020) to the baseline RPI measure and their RPI measure, respectively.

I now turn to discussing the results from these estimation exercises.

Applying the Baseline Estimation to Angeletos et al. (2020)’s RPI Measure. Figures

5a and 5b present the impulse responses and FEV contributions from replacing the baseline RPI

measure with that used by Angeletos et al. (2020). Results are based on 106 randomly generated

models from which a total of 482 admissible models were collected. The FEV share for the Angele-

tos et al. (2020) RPI measure is small for all considered horizons, only reaching 6% in the long run.

This result stresses the importance of using a suitable RPI measure for properly uncovering the

true nature of the business cycle shock. Nevertheless, to further reinforce this argument, it is also

important to examine the effect of RPI measure choice on the results from using the identification

approach from Angeletos et al. (2020), which is what I turn to next.
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Applying Angeletos et al. (2020)’s Estimation to the Baseline RPI Measure. Angeletos

et al. (2020)’s baseline estimation is conducted in the frequency domain and for a levels-VAR. Nev-

ertheless, since they have shown that their results are robust to doing the analysis in the time do-

main and to using stationary specifications, I proceed by applying their methodology in the time

domain to the same stationary baseline specification I consider throughout my analysis. Specifi-

cally, I identify the business cycle shock as the shock that contributes maximally to the 8-quarter

FEV of output for two different VARs:20 one that includes the baseline RPI measure and one that

includes the RPI measure from Angeletos et al. (2020). The impulse responses and FEV contribu-

tions for the former specification are shown in Figures 6a and 6b while those for the latter specifi-

cation appear in Figures 7a and 7b. Results for these two estimations are based on 2000 posterior

draws of the point-identified max-share based impulse responses and FEV contributions.

The results clearly manifest the importance of RPI measure choice for the contribution of the

business cycle shock to RPI variation. At the 10-year horizon, the shock from the VAR with An-

geletos et al. (2020)’s RPI measure accounts for only 7% of the variation in RPI while accounting

for 32% of RPI variation when the baseline RPI measure is used. In the long run this difference

grows even further apart with the long-run contribution for the VAR with Angeletos et al. (2020)’s

RPI measure being merely 13% compared to a meaningful 46% for the VAR with the baseline RPI

measure. Notably, the 46% number is similar to the 44% number from the estimation that removes

the long-run restriction (see Section 6.2), indicating that Angeletos et al. (2020)’s estimation ap-

proach is broadly similar to mine along the short-run dimension of the two methodologies. But,

importantly, the merit of imposing my long-run restriction has been shown both in the context

of its capacity of reduce the risk of spurious identification (see Section 4.1) as well as its capacity

to avoid the large downward bias in the estimation of the long-run contribution to RPI variation

stemming from the removal of this long-run restriction (see Appendix B.10 of the online appendix

to this paper). Hence, on top of the RPI choice issue, an additional advantage of my approach

relative to that from Angeletos et al. (2020) is my introduction of Restriction 2.

In sum, the results from Figures 6a-7b indicate that Angeletos et al. (2020)’s structural inter-

20The results for the 8-quarter output FEV targeting based estimation from Angeletos et al. (2020) appear
in their Figure 13b and last row of Table 14.
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pretation of their business cycle shock is sensitive to the choice of RPI measure being used.21

Taken together with the fact that there is a sound basis for the RPI literature’s focus on the durable

consumption and equipment investment sub-sectors and the associated GCV-based quality ad-

justment when measuring RPI, these results support the notion that it is important to use a proper

RPI measure for correctly ascertaining the type of the business cycle shock and its potential rela-

tion to IST.

8 Conclusion

This paper has provided robust evidence in favor of GPT news shocks being the major driver be-

hind business cycle fluctuations, where the manifestation of these anticipated GPT shocks takes

place in the investment-specific goods sector through IST news shocks. To obtain this evidence,

I first computed the set of models in which one shock generates business cycle comovement, i.e.,

raises output, hours, consumption, and investment on impact, and explains over 50% of the busi-

ness cycle variation in the latter real aggregates. Then, I examined the common features of this

business cycle shock across the models and found that this shock encompasses two robust char-

acteristics: i) it drives the bulk of the long-run variation in RPI and has a significant long-run

effect on TFP, reducing the former and raising the latter; and ii) it behaves in a boom-bust manner

in the late 1990s and early 2000s period, exhibiting significant positive realizations in the former

period while experiencing negative realizations in latter period. The first characteristic allows to

determine that the shock is likely a GPT shock, represented by either an unanticipated IST shock

or an IST news shock, which leads to long-term TFP gains by generating delayed fundamental

changes in the production process of the sectors using the new IST-related goods, whereas the

second feature allows to deduce that it is an IST news shock given the common view of the late

1990s and early 2000s as having been driven by favorable expectations about IST that were later

21It is also noteworthy that the business cycle shock drives a significant share of the long-run variation
in TFP regardless of the RPI measure being used and in contrast to the general message of Angeletos et al.
(2020)’s paper. In Table 14 of their paper, Angeletos et al. (2020) only report the business cycle frequency
FEV for TFP rather than medium- and long-run frequency contributions. In my results from Figure 7b the
business cycle shock indeed accounts for only 11% and 13% of the two- and three-year variation in TFP,
in accordance with the FEV estimates reported by Angeletos et al. (2020), but at the 10-year and long-run
horizons this share reaches 44% and 60%, respectively.
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revised downwards.

Taken together with the results from Ben Zeev (2018), this paper’s results suggest an empirical

”if and only if” connection between the following two statements: 1) an IST news shocks is the

main business cycle driving shock and 2) the main business cycle driving shock is an IST news

shock. Ben Zeev (2018) shows robust empirical support for the first statement based on identifica-

tion of the IST news shocks as being one of the two shocks (the other being the unanticipated IST

shock) driving the long-run variation in RPI and whose realizations follow a boom-bust pattern

in the late 1990s and early 2000s period. And this paper provides robust empirical support for the

second statement by showing that the identified ’business cycle shock’ - which is not restricted

upon to be one of the two (unidentified) shocks driving RPI’s long-run variation - shares the prop-

erties defining the identified IST news shock from Ben Zeev (2018), as manifested by an extremely

high correlation of 94.5% between the two (apriori unrelated) shock series. In other words, there

seems to be a convincing case for empirical equivalence between the IST news shock and ’business

cycle shock’ objects.
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Table 1: DSGE Model Based Monte Carlo Experiment.

Null Identification Admissibility Rate

With Long-Run RPI Restriction 96% 1.75× 10−5

Without Long-Run RPI Restriction 85% 2.7× 10−5

Notes: This table presents the share of simulations in which identification was null (first col-
umn) along with the average admissibility rate (average number of admissible models divided
by total number of posterior draws (105)) for the simulations that did produce a non-null set of
admissible models (second column). A total of 100 simulations were conducted (corresponding
to 100 artificial data sets from the DSGE model described in Appendix B of the online appendix
to this paper) with the first row of the table providing results from applying my baseline identi-
fication procedure to each data set using the baseline calibration; and the second row providing
results from applying the baseline procedure but without imposing the long-run RPI restriction
(Restriction 2) while using the baseline calibration.

Table 2: Long-Run Implications of Business Cycle Shock for RPI and TFP.

Impulse Response Forecast Error Variance Contribution

RPI -2.4% [-5.2%,-1.5%] 80% [61%,88%]
TFP 1% [0.5%,2.4%] 54% [21%,78%]

Notes: This table presents the median and 16th and 84th percentiles of the long-run impulse
responses and FEV shares of RPI and TFP due to the business cycle shock in the baseline
VAR. The 16th and 84th percentiles appear in squared brackets next to the median estimate.
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Table 3: Mean Realization of Business Cycle Shock and Other Long-Run (Non-
Business-Cycle) RPI Shock in Boom-Bust Period.

Business Cycle Shock Other Long-Run Shock

Boom Period Mean Realization 0.49 [0.34,0.65] 0.04 [-0.22,0.31]
Bust Period Mean Realization -0.33 [-0.57,-0.18] -0.06 [-0.35,0.27]

Notes: This table presents the median and 16th and 84th percentiles of the mean realiza-
tion of the business cycle shock and the other shock driving long-run RPI variation in
the boom (1997:Q1-1999:Q4) and bust (2000:Q1-2003:Q1) periods. Results for the base-
line VAR are shown, where in 1233 models out of the set of 1297 admissible models the
business cycle shock is also one the two IST shocks, i.e., the shocks driving long-run RPI
variation. To avoid inclusion of non-IST shocks that nonetheless, when coupled with the
business cycle shock, drive more than 90% of long-run RPI variation, I only consider for
the other long-run RPI shock models where this shock drives at least 5% of the long-run
RPI variation, leaving me with 982 such models. Hence, the results on the other long-run
RPI shock are based on these 982 models, or 76% of the total number of admissible mod-
els (a roughly similar share applies to the corresponding results from the other model
specifications considered in Appendix D of the online Appendix to this paper and shown
in Table D.2).

Table 4: Contribution of Business Cycle Shock and Other Long-Run (Non-Business-
Cycle) RPI Shock to Investment Boom-Bust Episode.

Business Cycle Shock Other Long-Run Shock

Boom Period Contribution 97% [62%,131%] 7% [-13%,37%]
Bust Period Contribution 161% [94%,226%] 1% [-38%,39%]

Notes: This table presents the median and 16th and 84th percentiles of the contri-
bution (in %) of the business cycle shock and the other long-run RPI shock to the
change in investment in the boom (1997:Q1-1999:Q4) and bust (2000:Q1-2003:Q1) pe-
riods. Results for the baseline VAR are shown, where the contribution is computed
as contribution o f shock

percentage change in investment in deviation f rom steady state growth , with the annual steady state
growth rate being the average growth rate for the 1959:Q1-2017:Q3 sample. Note that a
relative contribution of 100% implies that all of the gain or loss in investment is accounted
for by the shock.
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Table 5: Historical Contribution of Business Cycle Shock to Real Aggregates’ Per
Capita Loss in U.S. Recessions (In %).

Output Investment Consumption Hours

Recession Data Contribution Data Contribution Data Contribution Data Contribution

1960:2-1961:1 -2.6 -2.6 -12.4 -9.4 -1.2 -1.5 -3 -2.3
[-3.3,-1.8] [-12.6,-6.5] [-1.9,-1.2] [-3.2,-1.4]

1969:4-1970:4 -4 -1.8 -11.7 -6.4 -0.7 -0.9 -5.1 -2.2
[-3,-0.5] [-10.2,-2.7] [-1.7,-0.1] [-3.3,-0.8]

1973:4-1975:1 -5.6 -3.9 -15.5 -12.2 -4.5 -2.6 -4.1 -4
[-5.3,-2.3] [-16.5,-6.8] [-3.6,-1.5] [-5.4,-2.4]

1980:1-1980:3 -3.8 -1 -15.3 -3.7 -1.9 -0.6 -3 -1.1
[-1.7,-0.3] [-5.9,-1.5] [-1.1,-0.1] [-1.7,-0.6]

1981:3-1982:4 -6.1 -1.2 -20.8 -3.7 -0.4 -0.8 -4.7 -0.2
[-3,0.7] [-10.3,2.8] [-1.8,0.3] [-2.4,2.1]

1990:3-1991:1 -2.6 -1.5 -9.8 -6 -1.7 -0.9 -1.9 -1.6
[-2.1,-1] [-7.8,-4.2] [-1.3,-0.6] [-2,-1.1]

2001:1-2001:4 -1.7 -1.2 -4.8 -5.5 -1 -0.4 -4.2 -2.1
[-1.9,-0.4] [-8.3,-3] [-0.9,0.1] [-2.8,-1.4]

2007:4-2009:2 -7.9 -5.5 -34 -18.7 -4.8 -3.4 -10.2 -5.8
[-7.3,-3.9] [-25.2,-12.8] [-4.6,-3.3] [-7.8,-3.8]

Notes: This table presents the estimates of the contribution of the business cycle shock to each
of the recessions in my sample period. The first column (’Data’) for each variable presents the
percentage change from peak to trough of the corresponding real aggregate per capita, relative
to trend growth, in every recession. The second column reports the median contribution of the
business cycle shock to the corresponding real aggregate’s loss with the numbers in squared
brackets below it representing the 16th and 84th posterior percentiles of the contribution. Trend
growth rates are computed from the average growth rates of each real aggregate per capita over
the sample.

Table 6: Low-Frequency Correlation of Hours Worked in Levels and Differences with
RPI and TFP Growth Rates.

HP-Trend of RPI Growth HP-Trend of TFP Growth

HP-Trend of Hours Worked -74% 52%
HP-Trend of Hours Worked Growth 8% -4%

Notes: This table presents the correlations (in %) of the HP trends of hours worked in logs
and log-first-differences with the HP trends of the log-first-differences of RPI and TFP.
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Table 7: Lifting the Long-Run Restriction: Long-Run Implications of Business Cycle
Shock for RPI and TFP.

Impulse Response Forecast Error Variance Contribution

RPI -1.5% [-3.2%,-0.7%] 44% [12%,69%]
TFP 0.8% [0.3%,1.7%] 38% [11%,65%]

Notes: This table presents the median and 16th and 84th percentiles of the long-run im-
pulse response and FEV share of RPI and TFP due to the business cycle shock from an
estimation that only imposes Restriction 1 (excluding Restriction 2). The 16th and 84th
percentiles appear in squared brackets next to the median estimate.

Table 8: Lifting the Long-Run Restriction: Mean Realization of Business Cycle Shock
and Contribution to Investment Variation in Boom-Bust Period.

Mean Realization Contribution to Investment Variation

Boom Period 0.51 [0.38,0.64] 85% [53%,120%]
Bust Period -0.35 [-0.54,-0.17] 166% [102%,229%]

Notes: This table presents the median and 16th and 84th percentiles of the mean realiza-
tion of the business cycle shock and the contribution (in %) of this shock to the change
in investment in the boom (1997:Q1-1999:Q4) and bust (2000:Q1-2003:Q1) periods from
an estimation that only imposes Restrictions 1 (excluding Restriction 2). The contribu-
tion is computed as contribution o f shock

percentage change in investment in deviation f rom steady state growth , where the an-
nual steady state growth rate for investment is assumed to be 2.8%, which is the average
growth rate for the sample period. Note that a relative contribution of 100% implies that
all of the gain or loss in investment is accounted for by the shock.
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